NASA Contractor Report 4489

Formal Verification of a Microcoded
VIPER Microprocessor Using HOL

Kar] Levitt, Tejkumar Arora,

Tony Leung, Sara Kalvala,

E. Thomas Schubert, Philip Windley,
and Mark Heckman

University of California

Davis, California

Gerald C. Cohen
Boeing Defense & Space Group
Seattle, Washington

Prepared for
Langley Research Center
under Contract NAS1-18586

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1993

Preface

This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital
Flight Control Systems Suitable for Fly-By-Wire Applications, Task Assignment 3. Task 3 is associated

with formal verification of embedded systems.,

The formal verification of a microprocessor involves demonstrating that a specification of the
microprocessor is satisfied by its implementation. The specification is usually a formal description of the
microprocessor's instructions. Any more concrete description of the microprocessor can suffice for the
implementation, but it has become the practice for the implementation to represent the major electronic
blocks that constitute the microprocessor (ALU, registers, latches, memory, etc), hence the name electronic
block model. Although not necessarily routinely, a realization of the electronic block can be checked by

simulation or other testing methods.

A particular microprocessor of interest is Viper, designed by the Royal Signals and Radar Establishment,
UK (RSRE) for critical applications. An initial successful proof of Viper (by Avra Cohn) was of its major
state model. However, what was verified is considered to be too abstract for an implementation. A
subsequent effort was undertaken by Cohn to verify Viper's electronic block model. Both of these efforts
made use of the HOL (the Cambridge Higher Order Logic) theorem prover. This latter proof was not

completed, mostly because it became too time consuming.

Our view of the incomplete proof of Viper is that the jump in abstraction between the electronic block
model and the specification is too great. By introducing intermediate levels between the two extreme
modcls, the overall proof becomes one of establishing more but simpler proofs. Windley, in a recent U. C.
Davis PhD thesis showed that the levels can be represented as interpreters, each of which models an
abstraction of a microprocessor. For example, one of the levels is an interpreter for the execution of
microinstructions. To further simplify the proof effort, Windley developed a theory of generic interpreters--
a notation that is sufficiently powerful to represent a large class of interpreters. The interpreter theory has
been formalized using generic theories in HOL for use in specifying and verifying microprocessors. The
generic interpreter theory formally defines an interpreter and generates a correctness theorem for the generic

model stating what it means, in general, for an instance of the interpreter to be correctly implemented.

To demonstrate the effectiveness of this theory on a real microprocessor instruction set, this report presents
our results on applying the generic interpreter methodology to Viper. We redesigned Viper as a hierarchy of

five interpreters, each of which is an instance of the generic interpreter. The top level specifies the Viper

ITI

m_jlm INTENTION TR 1 BN
PRECEDING PAGE BLANK NOT FILMED

instruction set, and the lowest is of the abstraction of the conventional electronic block model, but one that

implements a microinstruction interpreter.

In this report we discuss our design of the microcoded machine that realizes the Viper instruction set, and
our verification of this machine. The design and most of the verification was carried out in 1 person-year
by two Master's students with no previous background in formal methods. We also discuss features of the

original Viper design that our verification effort does not consider.

The NASA technical monitor for this work is Sally Johnson of the NASA Langley Research Center,
Hampton, Virginia.

The work was accomplished at Boeing Military Airplanes, Seattle, Washington, and the University of

California, Davis, California. Personnel responsible for the work include:

Boeing Military Airplanes:

D. Gangsaas, Responsible Manager
T. M. Richardson, Program Manager
G. C. Cohen, Principal Investigator

University of California:

Dr. K. Levitt, Chief Researcher
Tejkumar Arora

Tony Leung

Sara Kalvala

E. Thomas Schubert

Dr. Philip Windley

Mark Heckman

IV

TABLE OF CONTENTS

Section Page
LO INTRODUCTION . e 1
L VP R 3

L2 ADStraction. 5

1.2.1 Hierarchical Decomposition.oooiiiiii i 5

1.2.2 Generic Interpreters.oooiiii i e 6

1.3 What we have accomplished vis-a-vis VIPER ..o 7

L4 Notation and Conventions. ... 9

1.5 Chapter SUmMarios. . ..o e e 9

2.0 RELATED MICROPROCESSOR VERIFICATION EFFORTSoooovvvi . 11
2.1 Tamarack ... 12

2.2 FMBO0L. o 12

2 VPR R 13

24 SECD. o 15

2.5 COMPATISOI. ..ot 15

3.0 THE FIVE-LEVEL STRUCTURE OF OUR VIPER IMPLEMENTATION 17
3.1 VIPER Instruction Levelc..oi i 18

3.2 The Macro Level... ..o i 19

3.3 Micro Level oo 21

3.4 Phase Level 22

3.5 Electronic Block Level oo 23
3.5.1The Data Path.. ... e 23

3.5.2 The Control Unito e e 25

4.0 PROOF METHODOLOGY oritiiti e e 29
4.1 ADSLTACt OPErationscooet ittt e 29

4.2 Verification Using an Abstract Interpreter Modelcoi i 31

5.0

6.0

7.0

8.0

9.0

VI

4.3 Hierarchical proof.... .. .o 33

MACRO LEVEL SPECIFICATION AND PROOF OF MICRO LEVEL 37
5.1 Instantiation of the INLEIPreterovvvi v i ierane et eeaes 37
5.2 Example specificationooviiiiiiiiiiiii e 40
5.3 Proof obligations and example proof.........ooiiiii 41
MICROCODE SPECIFICATION AND PROOF OF PHASE LEVELo.ocoene 43
6.1 Instantiating the generic Interpreterooooiiiiiiiiiiiiiiiiieiiiiieees 43
6.2 Specification of MICTOINSEIUCLIONS «...vnviiiiiiiiiiiii e 43
6.3 Proof obligationsoiiiiiiii 46
PHASE SPECIFICATION, BLOCK SPECIFICATION AND PROOFooe. 47
7.1 Description of the Phases ..o 47
7.2 Description of block level .. o 52
7.3 Proof of the Block level ... iiiiiii e 52
MACRO LEVEL CORRESPONDENCE TO RSRE SPECIFICATION.................... 57
TR (R e Lo AT W R EERTERLTEEE 57
8.2 MethOdolOZY . vonviiii et 57
8.3 Defining the IStTUCHOMS ot ivn e e 58
B Prool Of SHILIY .ottt et e 61
8.5 Definition of the Decodervvviiiiiie i 66
CONCLUSTON S . ottt ittt et ettt ettt e e e s e e s st es e aantseas 67

Appendix

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

APPENDIX H:

APPENDIX I:

APPENDIX J:

APPENDICES

Page
DESCRIPTION OF HOL ..o e 73
INTERPRETER THEORY AND ABSTRACT FUNCTIONS 7
VIPER LEVEL SPECIFICATION ... o 89
MACRO LEVEL SPECIFICATION ... oo 111
MICRO LEVEL SPECIFICATION . ..o 157
MICROCODE L 231
SAMPLE MACRO TO MICRO LEVEL PROOFooo o . 237
PHASE LEVEL SPECIFICATION ... 247
ELECTRONIC BLOCK LEVEL 267
INSTRUCTION DECODER. ..o 291

VII

LIST OF FIGURES

Figure Page
1.2-1 A microprocessor specification can be decomposed hierarchically. 6
3.1-1 VIPER Instruction Formatoo.oo..o 18
3.3-1 Microinstruction sequence for SHLSo. .. 22
3.5-1 Electronic Block Modelccooooiiiiiiiii 24
3.5-2 Microinstruction FOrmatooooiieii i 25
4.1-1 Abstract representation of operations.. 30
4.1-2 Using an abstract representationo 31
4.2-1 Abstract representation of 4 Processor.................................. 31
4.2-2 Specification of the interpreter ... 32
4.2-3 Implementation of the interpreter.................... 32
4.2-4 Obligations of the interpreter model 33
4.2-5 Intermediate lemma in final proof.......................... 34
4.2-6 Correctness of the interpreteroooooo 34
5.1-1 Macro-level viewed as an interpreter........................oo.... 37
B.1-2 Macro-instruction list ... 38
5.1-3 State as viewed by macro-instructions ... 38
5.1-4 Obligation for macro-instructionscooo 39
5.2-1The writereg funclionooooiiiniiiiiiiiiii 40
9.2-2 Example macro-instructiono.oi 40
5.3-1 Function to generate goalsoooi 41
A.3-2 Prool of SHLB instruction ... 42
6.1-1 Micro level interpreter in terms of the generic Interpreter ... 44
6.2-1 State as viewed by microinstructionscocio 44
6.2-2 Example microcode ... 45
6.3-1 Correctness of microinstructionscooocoo 45
6.3-2 Correctness of the micro level ... 46

IX

s YL smesmonnic i PREGEDING PAGE BLANK NCT FILMED

7.1-1 State manipulated by phase and EBM levels ..o 48

7.1-2 Description of first Phaseoooiiiii 48
7.1-3 Description of second PRASEcuvveiiiiniiiiieiii 49
7,124 THITA PRASE « ot eneneete ittt e e e e e et st 50
7.1-5 Third phase, CONLIMUALIONvurreeiiieit it 51
7.2-1 Register with enable INPub........oooiiiii e 52
7.2-2 DIALA PALI « ottt ene ettt s e 53
7.3-1 Instantiating generic interpreter at phase LOVEl Lt e 54
7.3-2 Tactic for proving individual phases 54
7.3-3 Proof of correctness of phase level 55
891 VIPER’S NEXT fUNCLION 1.ttt ettt 59
8.2-2 Goal for the VErilication SLEP uion ittt 59
8.4-1 Goal for proof of SHLIB ..o 61
8.4-2 Lemmas for cases of DSIT oo 62
8.4-3 Tactics in proof of SHLB ..o 62
8.4-4 Lemmas with properties of VIPER level ..o 63
8 4-5 Error cases in VIPER specificationcoooiiiiiiiiiiiiiiaieereeeeneee 65
8.4-6 Tactic used in proof of SHLB L. e 65

LIST OF TABLES

Table Page
2.5-1 Comparisou of verified microprocessors...___ 16
3.2-1 VIPER macroinstructionsoiiioiisiiioiioei 20
3.2-2 Decoding operand fields............................. 21
A-1 HOL Infix Operators ... 74
A-2 HOL Binders. ... 75
A-3 HOL Type Operators ... 76

X1

1.0 INTRODUCTION

Computers are being used with increasing frequency in arcas where the correct implementation

of the computer hardware is critical. These include:

o Safety-critical applications where the computer is directly involved in the control of systems
that protect human life. A flight control system on an aircraft or the control system in a

nuclear power plant are examples of this type of application.

¢ Security-critical applications where the computer is used to process information that is eco-
nomically or politically sensitive. Many computers used in government or industry fall into

this category to one degree or another.

¢ Mass—produced consumer goods where the computer is an integral part of the product and
a mistake in the design or implementation could result in product recalls costing enormous

amounts of money.

In these and other applications it is vital that the computer system be correct.

There are two complementary approaches to computer correctness: fault tolerance and fault
exclusion. The former, usually achieved through designs with redundant computing elements, is
most useful in handling dynamic faults occurring during system operation, due to component failure
or other unexpected events. The latter is a static process intended to remove errors in design and

implementation before the computer system is in service.

Testing is an example of a fault exclusion technique. Testing can be divided into two distinct
kinds: implementational testing, which is used to verify that a physical device is fabricated correctly,
and functional testing, which is used to verify that a design functions as the designer intended.
Because it is impossible to exhaustively test a computer system, formal verification is an attractive

alternative to functional testing.

Formal verification requires at least two descriptions of a system: one of its implementation
and one of its specification. Correctness is shown by demonstrating through mathematical proof
that the former implies the latter. Although verification can be carried out using pencil and paper,
the detail associated with the verification of realistic systems would overwhelm even the most
patient human prover. Moreover, humans, being fallible, are likely to accept erroneous proofs as

theorems. An alternative is the use of theoren proving programs. Such mechanical theorem provers

range from proof generators that attempt to create a proof with minimal human assistance to proof
checkers that check a human-created proof. We used the HOL (Cambridge Higher Order Logic)
theorem prover for our work. HOL's style of proof is closer to that of a proof checker than a proof
generator, but HOL can be programmed to also provide significant automation in the creation of

proofs.

Although through verification a computer system can, in principle, be demonstrated to contain
no design errors, verification cannot in practice be guaranteed to achieve such a goal. First of all,
the specification might not represent what the user wants of the system; in other words, the creation
of the specification from informal requirements can introduce errors. Second, what is being verified,
the implementation, is an abstraction of the physical device that comprises the microprocessor; the
physical device might not correspond to the implementation, possibly due to errors introduced in
the fabrication process. Third, verification, even with the assistance of mechanical theorem provers,
is difficult and extremely human intensive; it might be impossible to complete the verification of

complex systems.

Verification methodology has held the promise of correct programs for many years. However,
it has been mostly impractical for large programs. In recent years, there has been interest in
microprocessor verification. Although large programs are beyond the capability of the current
verification technology, the verification of commercial microprocessors should be realistic. Qur

justifications for being optimistic about microprocessor verification are as follows:

e The specification for a microprocessor is not difficult to produce, largely expressing the func-

tional behavior of each instruction.

¢ The implementation for many microprocessors is conceptually straightforward, largely in-
volving iterative structures (such as registers) and control logic to resolve the many different
cases. The algorithms represented by the implementation, even for arithmetic, are usually

extremely simple compared with those associated with programs.

However, the detail involved in microprocessor proofs rapidly becomes staggering. This was

the experience of Avra Cohn in attempting to verify the VIPER microprocessor.

2

1.1 VIPER

VIPER was designed by RSRE (ref. 1) in the mid-1980’s. Not intended by its designers to
push the envelope of microprocessor design, VIPER was designed to be simple and verifiable. For
example, VIPER does not contain a stack or (user and privileged) modes, nor does it support
interrupts. The first was excluded because it invites a programming practice that can lead to
runtime errors, and the third because it was thought to be a feature difficult to verify. We have not
seen comments on the second, but we conjecture that VIPER would not be used in any applications

requiring multitasking.

Of interest to us here, are the attempts to verify VIPER, in particular (ref. 2). The top-level
specification defines the NEXT state as a function of the current state and the current instruction.
The elements of the state are main memory, five registers, and a few status bits—abstracting away
a large fraction of the state that comprises the implementation. The implementation, called the
clectronic block model is described in terns of logical blocks such as an ALU, registers, flip-flops,
multiplexors, etc. Both the specification and the electronic block model were provided to Cohn
by RSRE. The proof was to demonstrate that the electronic block model implies the specification;

HOL was used in the proof process.

Cohn’s work remains a significant contribution, having formalized the electronic block model
in HOL and having developed a methodology and many lemmas that could be used to carry out the
proof. However, the proof was not completed. As it progressed, it became clear that approximately

1 person-week was required to prove the implementation of each of the 122 cases in the specification.

The difficulty was due to a number of factors, including:

a. RSRE’s specification is extremely unstructured; essentially it is almost totally non-orthogonal.
Although not conceptually 'difﬁcult, the specification is still long—three pages of HOL logic.
The specification is quite a bit more unstructured than what one would expect of the instruc-

tion set architecture for a computer with the instruction set power of VIPER.

b. Although not particularly complicated as compared with state-of-the-art commercial micro-
processors, the implementation is still quite long. It occupies approximately seven pages of
HOL logic. If this were a program being verified, by all measures it would be of nontrivial

length.

c. Further elaborating on (b), the jump in abstraction between the specification and the elec-

tronic block model is too large to be carried out in one step.

d. There is insufficient support in HOL for the kinds of low-level reasoning associated with words,

bit strings, etc.

It is item (c) that is of particular concern to us. In starting out on our work, we conjectured that
through intermediate abstractions the proof effort required for VIPER could be simplified to the
point where it would be realistic. It is still necessary to verify the lowest level of abstraction, defined
in seven pages of HOL logic, ultimately with respect to the highest level of abstraction, occupying
three pages of specification representing 128 cases. However, if the next to the lowest level of
abstraction has fewer cases, the lowest level will be easier to veAfy. Similarly, if the next-to-highest
level of abstraction is shorter, it will be relatively easy to verify with respect to the specification.
The handcrafting of levels of abstractions is what is needed to simplify the verification of complex
systems. In creating these abstractions, there will be tradeoffs among the number of cases, the size

of the abstraction’s specifications, and the jump in data abstraction between adjacent abstractions.

As discussed later, the specification of the electronic block miodel of our VIPER machine
is simpler than that of Cohn's, with respect to omitted details not pertinent to our proof. For
example, we do not specify in detail the logic of the ALU; instead it is declared to perform one of
32 unspecified functions. This incompleteness, of course, appears at all levels, including the top
level. As noted by Brock and Hunt (ref. 3) with respect to a similar but less glaring weakness in
the RSRE specifications of VIPER, the top-level specification does not permit proofs of programs
that depend on the semantics of these operations to be carried out. However, the incompleteness
in the electronic block model is not relevant to the main purpose of our verification effort: to verify
that the sequence of actions at the electronic block model assure (among many other things) that

the correct ALU control lines are asserted with respect to the instructions under execution.

VIPER has many more features that make it suitable for use in safety-critical applications,
but are not modeled at the top-level. These include input signals for resetting the machine, single-
stepping it, forcing the machine into an error state and extending read/write cycles. Output
signals are also provided to indicate the state of the STOP and B flags, and whether the machine
is currently fetching or executing an instruction. VIPER also incorporates a time-out facility in its

interaction with the memory.

Because these features are inconsequential to the top-level specification, however, they can
safely be ignored in the block-level specification, i.e. the implementation. However, for the purpose
of verification with respect to the top-level instructions, certain assumptions about the behavior

of these signals must be made. For example, the reset signal is assumed to be false throughout

the execution of an instruction and the STOP flag is assumed to be false at the beginning of an
instruction. In addition, a simple memory model in which memory responds in a fixed and known
number of cycles is being assumed, although the design of VIPER supports more complex memory

protocols.

1.2 ABSTRACTION.

Viewing a complex program as a hierarchy of abstractions is a well-known approach to sim-
plifying the verification of such a system. Programming languages such as Ada provide syntactic
units (i.e., modules) for defining abstractions; of course, it is the programmer’s responsibility to

create modules that will simplify the design and, if it is relevant, the verification.

To facilitate the use of abstraction in the design and verification of microprocessors, Wind-

ley (ref. 4) formalized the concept of interpreters.

1.2.1 HIERARCHICAL DECOMPOSITION.

As mentioned above, verification requires at least two formal descriptions of the computer
system: one behavioral, B, and one structural, S. Verification consists of showing through formal

proof techniques that

S=B

One need not be limited, of course, to one level of abstraction. Supposing that B; through
B, represent increasingly abstract specifications of the system’s behavior, one could verify its
correctness by proving

S=B;>...= B,

Figure 1.2-1 shows how this principle can be applied to the specification of a microprogrammed
microprocessor. At the bottomn of the hierarchy is the usual structural specification of the electronic

block model.

Macro Level
Specification

b

Micro Level
Specification

b

Phase Level

Specification

Electronic Block
Model

Figure 1.2-1: A mucroprocessor spectfication can be decomposed haerarchically.

This specification describes the computer’s implementation—for our purpose, the connections
among its various components. At the top is the behavioral specification corresponding to the
programmer’s model of the microprocessor. In between these are two additional abstraction levels:
one for the microcode interpreter and one specifying the phase (or subcycle) behavior. Our VIPER
design has two macro levels: the topmost is the RSRE specification and the next lower specifies an

orthogonal instruction set containing 20 instructions.

Hierarchical decomposition plays an important role in the methodology for verifying micropro-
cessors. The use of a hierarchical decomposition can lead to significant reductions in the amount

of effort used to structure and complete a correctness proof.

1.2.2 GENERIC INTERPRETERS.

With one exception, each of the levels in the specification hierarchy shown in Figure 1.2-1
has the same structure. The bottom-level specification is a structural description, but the other
specifications all share a common structure. Each of the abstract behavioral descriptions can be
specified using an interpreter model. However, the level in our hierarchy that corresponds to the

RSRE instruction set does not fit exactly our interpreter model.

Perhaps the most distinguishing feature of an interpreter is that it has a flat control structure.
One of n instructions is chosen based on the current state. The chosen instruction operates on
the state and the cycle begins anew. There are a large number of interesting computer systems
that have a flat control structure: microprocessors, operating systems, language interpreters, and

editors are a few.

Since each of the behavioral descriptions in the specification hierarchy are similar, we would
prefer to develop a general model of an interpreter and use this model in our specification rather

than treating each level in the hierarchy separately.

As we will demonstrate, a generic interpreter specification consists of a number of parts:
abstract state, instructions, selectors for instructions, mapping to next lower state, description of
implementation, etc. To verify the instantiation of a generic interpreter involves the verification of

obligations, the most diflicult of which is that each instruction is correctly implemented.

1.3 WHAT WE HAVE ACCOMPLISHED VIS-A-VIS VIPER

Our goal was to show that through the use of the generic interpreter methodology a micro-
processor as complex as VIPER could be verified. Since VIPER was not designed as a hierarchy
of interpreters, the RSRE VIPER design could not be verified using this methodology. Hence, we
designed a microprocessor that would realize the VIPER instruction set as specified by RSRE. The

design is in terms of the five levels of abstraction, as follows:

a. The top level is, with a few minor simplifications, the RSRE specification. In the RSRE
specification, all functions (with the exception of a few arithmetic functions) are defined; in
our specification some functions (such as the comparison of two words) are uninterpreted.
As indicated previously, the exact meaning of functions used to define the instructjons is
not relevant to a proof that shows that the appropriate ALU signals are asserted for each

instruction, and operands arc fetched from and stored to the specified locations.

b. The next level down is the macro level specification (the top level of figure 1.2-1), providing
20 instructions. This level, as opposed to the RSRE specification, represents the VIPER
instruction set in terms of comparatively few instructions with orthogonal fields. It is empha-
sized that this level is equivalent in power to the RSRE specification, but of course having
a different format the instructions of this level would not execute VIPER programs. It was

necessary to demounstrate that this level realizes the RSRE specification at level (a).

c. The third level is the micro level, providing approximately 100 microinstructions. Each macro
instruction is implemented as a linear (loop-free) sequence of a subset of the microinstructions.

The microcode is in effect the data of this level.

d. The next level down is the phasc level, which implements each micro-instruction in a sequence
q

of 3 phases

e. The lowest level is the Electronic Block Model level, which consists of the control structure

and datapaths to implement each of the phases.

Our experience to date has convinced us that the generic methodology has simplified the
proof effort by half, as compared with Cohn’s experience. Furthermore, the use of hierarchical
abstractions has permitted us to divide up the proof. Most of the proof was accomplished by two

Master’s students, each student verifying 2 levels.

As Cohn has noted, it is important to clearly state what has been and what has not been

verified.

Our proof demonstrates that the Electronic Block Model we have designed implements the
RSRE instruction set. It is important to note that the ALU is a component of the Electronic
Block Model. But having just specifications for the ALU, aud not an implementation, means that
we are not verifying that the ALU, when stimulated with signals that are assumed to cause it
to add two numbers, actually does carry out the add operation. Of course, we could carry out
the verification down to the gate-level--and verify the ALU, decoders, flip-flops, registers—and the
other components taken as primitives of the Electronic Block Model. Such proofs are within current

verification capabilities and in fact have been performed routinely by many verification teams.

When all is said and done, our verification shows the following: For each instruction of the
RSRE specifications, the Electronic Block Model causes the proper sequencing of actions to take
place; the operands are fetched from the right place (registers or memory), the results are stored
in the right place, and the right signals are asserted on the primitive functional units (such as the
ALU). Since there are many ways the Electronic Block Model could sequence activities (most of

them incorrect) what is verified is far from trivial.

1.4 NOTATION AND CONVENTIONS.

Our notation will be that of standard logic with a few extensions:

e Terms in the logic will be written in typewriter font.

¢ Conjunction, disjunction, negation, implication, universal quantification, existential quantifi-

cation, and lambda abstraction use the usual symbols: A, vV, o, =, ¥, 3, and A respectively.

”

e We use a conditional operator that is written a — b | c, meaning “if a, then b, else c.
o Definitions will be denoted with a pre-pended F 4.

e Terms that have been {ormally proven in the logic will be pre-pended with |.

Other notations and logical expressions will be explained as they are used.

1.5 CHAPTER SUMMARIES.

Chapter 2 compares VIPER to other microprocessors that have been verified. Our Macro level
shows that VIPER can be viewed as a microprocessor with approximately 20 instructions—about
the same as several other microprocessors that have been verified. However, VIPER’s imple-
mentation complexity was reflected in the size of its microcode, i.e. approximately three times
the complexity of other wicroprocessors considered for verification. The additional complexity is

mostly due to error conditions.

Chapter 3 presents our design for the VIPER microprocessor, with the discussion organized

according to the five levels of interpreters identified.

Chapter 4 reviews the hierarchical methodology employed in the verification. Excluding the
top and bottom levels, each level in the hierarchy is a generic interpreter, which is instantiated to
include the instructions supported by the interpreter, a unique key assigned to each instruction,
the state space of the interpreter and its implementing interpreter, a mapping between these state
spaces, and a description of the iniplementation. Once instantiated, an interpreter can be verified—

showing that the implementation implies the specification for each instruction in the specification.

Chapters 5, 6, 7, and 8 highlight the verification effort. We discuss the specifications for each
of the five interpreters and present in detail the verification of the shift-left instruction through the

five levels.

Chapter 9 presents our counclusions and recommendations for future work. Particularly rel-
evant are the recommendations for providing additional automation in the HOL system and the
need for faster theorem proving engines. Although VIPER is a significant challenge to the current
verification technology, it is still a rather impoverished microprocessor. Of interest, then, is scal-
ability of the verification we and others working on microprocessor verification are pursuing: the

prospects for verifying designs that are more complex than VIPER by an order of magnitude.

The 10 appendices include a brief description of the HOL logic (Appendix A) and the HOL
listings of the five interpreters and the ML code that constitutes the verification. We have included
the complete listings to allow the dedicated reader the opportunity to check our proof, to improve
it through the use of better tactics, to extend the design with new features, or to translate the

specifications into a different logic.

10

2.0 RELATED MICROPROCESSOR VERIFICATION EFFORTS

There have been numerous efforts to verify microprocessors. Many of these have used the
same implicit behavioral model. We will first describe this implicit model and then describe the

microprocessor verifications that use it.

In general, the model uses a state transition system to describe the microprocessor. The

microprocessor specification has four important parts:

a. A representation of the state, S. This representation varies depending on the verification

system being used.

b. A set of state transition functions, J, denoting the behavior of the individual instructions of
the microprocessor. Each of these functions takes the state defined in step (a) as an argument

and returns the state updated in some meaningful way.
¢. A selection function, N, that selects a function from the set J according to the current state.

d. A predicate, I, relating the state at time ¢ + 1 to the state at time ¢ by means of J and N.

In some cases, the individual state transition functions, J, and the selection function, N, are
combined to form one large state transition function. Also, a functional specification would use a

function for part (4) instead of a predicate. The specifications, however, are largely the same.

After the microprocessor has been specified, we can verify that a machine description, M,
implements it by showing
Vs € S M(s) = I(s).
That is, I has the same effect on the state, s, that M does. This theorem is typically shown by

case analysis on the instructions in J by establishing the following lemma:
Vj € J M(s) = (Vt:time C(j,s,t) = s(t + n;) = j(s(t)))

where C is a predicate expressing the conditions for instruction j’s selection, s(t) is the state at
time ¢, and n; is the number of cycles that it takes to execute j. This lemma says that if an
instruction j is selected, then applying j to the current state yields the state that results by letting
the implementing interpreter M run for n, cycles. We call this lemma the instruction correctness

lemma.

The remaining parts of this section describe microprocessor verifications where some variation

of this general model was used.

11

2.1 TAMARACK

Tamarack is a small microcoded microprocessor that has been verified by Jeffrey Joyce at the
University of Cambridge. Joyce has verified Tamarack to the transistor level using HOL and has
fabricated an 8-bit version of the design in CMOS. In addition to verifying the microprocessor,

Joyce has also verified a compiler for Tamarack (ref. 5).

Tamarack is a 16-bit computer with a 13-bit address space. The computer has 8 instructions:
halt, jump, jump if zero, add, subtract, load, store, and skip {or no operation). The architecture has
an accumulator and a program counter visible to the assembly language programmer in addition
to the memory. The computer is implemented in microcode and has a single bus connecting each

of the blocks in the electronic block model. The microstore is 32 microwords long,

Tamarack is based on a computer designed and verified using the LCF-LSM system (a precursor
to HOL) by Mike Gordon (ref. 6). Daniel Weise verified Gordon’s design using a Lisp-based system
called Silica Pithecus (ref. 7) and Harry Barrow verified it using a system called VERIFY (ref. 8),

making this the most widely verified microcomputer design.

The specification and verification of Tamarack corresponds closely to the general model devel-
oped at the beginning of this section. The macro-level specification denotes what each instruction
does and ties the descriptions of each instruction together with a predicate stating the relation

between the state at time ¢ and time ¢ + 1.

The verification of Tamarack is enlightening since it has been performed many times with
many different verification systems and using many levels of abstraction. Tamarack is, however,
small, and research is underway to discover methods for scaling the Tamarack experience to larger

microprocessors, including those with larger instruction sets and support for operating systems.

2.2 FMS8501.

FM8501 is a microprocessor designed and verified by Warren Hunt using the Boyer-Moore
theorem prover (ref. 9). The architecture has a register file containing eight, 16-bit registers, a
64K-byte memory space, 26 instructions, and four memory addressing modes. FM8501 models
memory as an asynchronous process. The implémenté.tion is microcoded and has a microstore of

16 microwords.

12

The specification of FM8501 consists of two recursive functions: one for the behavioral spec-
ification and one for the implementation. The functions recurse at each clock cycle, computing a
new state. Time and the asynchronous inputs to the CPU are modeled by an oracle. The oracle
is represented by a list; it is this list that the specifications recurse on. Time is represented by the
current position of the recursive specification in the list. Each member of the list gives whatever
asynchronous inputs may exist at that time. The proof shows the equivalence of the two recursive

functions using an abstract (uninterpreted) oracle function.

Crocker et al re-verified FM8501 using a specification written in ISPS in the SDVS verification
system (ref. 10). The re-verification is significant because the work used no part of Hunt’s work
directly and thus represents an independent verification of the design using a different verification

system.

On the surface, the verification of FM8501 appears quite different than the verification of
Tamarack, but in fact, they are very similar. The methods of specification for the top-level can be
seen as an instance of the general model presented at the beginning of this section. The verification,
even though done on a functional specification in a first-order system, uses the a form of the

instruction correctness lemma to show that the electronic block model implements the top-level

specification.

2.3 VIPER.

VIPER was designed by Britain’s Royal Signals and Radar Establishment (RSRE) at Malvern
to provide a formally verified microprocessor for use in safety-critical applications. VIPER’s de-
signer’s chose not to include a stack and interrupts—anticipating that they might lead to difficulties
in the verification. The machine was designed to halt on errors and raise an external exception.

The fabrication was carried out by two separate maunufacturers and is commercially available.

VIPER has a 20-bit program counter, a 32-bit general purpose accumulator, and two 32-
bit index registers. VIPER has a single instruction format that allows the user to select a source
register, one of four memory addressing modes, one of eight destinations, whether or not to compare,
and one of sixteen ALU functions. In addition to the fields just mentioned, each instruction contains
a 20-bit address. The VIPER design is described in detail in (ref. 1). The implementation is

hardwired instead of being microcoded.

13

The combination of fields in the instruction format (excluding source and destination selections)
yields 122 different instruction cases. Qur analysis of the VIPER design (ref. 11) has characterized
the VIPER instruction set using only 20 instructions. As we will see, this is an important distinction
that bears on the difficulty of verifying VIPER, and motivated us to include a new macro level in

our design.

VIPER is the first microprocessor intended for commercial use where formal verification was
attempted. Again, the verification was not completed. While VIPER is significantly simpler than
today’s general purpose microprocessors, its verification provides a benchmark on the state—of-the-

art in microprocessor verification.

The specification of VIPER attendant to previous proof efforts (by RSRE and others) is hier-
archical, although the levels do not have theuniform structure of our specification. The top-level
specification of VIPER developed by RSRE is similar in style to that of Tamarack (ref. 5). The next
level of the specification is called the major-state machine and is a description of VIPER’s major
states. The next level in the specification is the electronic block model. The top two levels were
specified first in LCF-LSM and later in HOL. The electronic block model was specified in HOL.
Below the electronic block model the circuit was described using a hardware description language

called ELLA and verified by “intelligent exhaustive simulation” (ref. 12).

A paper-and-pencil proof of correctness between the top—level of VIPER and the major-state
machine was performed by RSRE. Because of the complexity of the lower-level (electronic block
model to major state machine) proof, RSRE did not attempt a hand proof of this level. RSRE
contracted with Avra Cohn at Cambridge University to formalize the top-level proof and perform
the lower-level proof. Cohn describes her formal verification of the major-state machine with

respect to the top-level specification in (ref. 13).

Cohn decided to forego the proof of the top-level correspondence in trying to verify the elec-
tronic block model since the major-state level si)eciﬁcation and the electronic block model yielded
dissimilar structures under cases analysis. Instead, she attempted to show a direct correspondence
between the top-level and the electronic block model (ref. 14). Cohn’s proof of this level remains
incomplete because of the large case explosion that occurred and the size of the proofs in each of

the cases. This is not to say that the proof could not be completed.

From Cohn’s experience with VIPER, it seems clear that abstraction is critical in dealing with
the large case explosion that occurs in these kinds of proofs. The major-state machine did provide

a level of abstraction between the top-level and the electronic block model, but it appears to be

14

the wrong one. In addition, Cohn had almost no access to VIPER’s designers and thus had little or
no help in deciphering and understanding the mostly informal specification of the electronic block

model.

2.4 SECD.

Brian Graham et al at the University of Calgary have undertaken the implementation and
verification of the SECD machine (ref. 15). The SECD machine is an abstract Lisp machine
invented by Landin to reduce lambda expressions (ref. 16). The variant of SECD implemented
by Graham is described in (ref. 17). Graham’s work is part of a larger effort at the University of

Calgary to verify a complete system including a LispKit compiler as well as the SECD chip.

The architecture has four registers, called S, E, C, and D. The S register holds a stack pointer,
the E register holds a pointer to the environment, the C register functions as a program counter,
and D points to a stack used to dump the state of the machine. There are approximately 20

instructions and the implementation is microcoded.

The remarkable thing about the SECD proof is that even though the architecture is specialized,
the specifications and proofs are done in a manner very similar to the proofs of the more conventional
architectures described in the last three sections. The behavioral model corresponds to the general
model described at the beginning of this section. The top-level specification is based on state-
transitions and the description of the electronic block model is a predicate-based circuit description
similar to both (ref. 5) and (ref. 14). The garbage-collection mechanism is implemented in hardware,
and the proof was done without taking it into account. Work is in progress on a second proof that

verifies the garbage-collection hardware and a second implementation.

2.5 COMPARISON.

Table 2.5-1 summarizes the designs of the four microprocessors presented in this section. The
table, like all such tabulations, cannot hope to capture all of the important characteristics of the

microprocessors, but the data presented does provide some basis for judging relative complexities.

15

16

Tamarack | FM8501 | VIPER | SECD
User Registers | 2 8 4 4
Instructions 8 26 20 21
Microcoded yes yes no yes
Microstore size | 32 words | 16 words | N/A 512 words
Interrupts yes no no no
Memory Model | async async sync sync
Word Width 16-bit 16-bit 32-bit 32-bit
Memory Size 8K 64K IM 16K

Table 2.5

-1: Comparison of verified microprocessors

3.0 THE FIVE-LEVEL STRUCTURE OF OUR VIPER IMPLEMENTATION

The proof of correctness of the VIPER microprocessor requires that the formal description
of VIPER’s implementation (down to the Electronic Block Model - EBM) implies the formal
description of VIPER’s high-level specification. Due to the complexity and expense of proving this

directly, however, the original VIPER verification was never completed (ref. 18).

In order to simplify the proof effort so that it could be accomplished in a reasonable time, we
described the specification and implementation of VIPER in the form of a hierarchy of abstract
interpreters, as described in Chapter 1. Instead of directly relating the high-level specification
and implementation descriptions, the high-level specification can be related to an intermediate and
less-abstract interpreter, which can be related to a lower-level interpreter, and so on down to the
implementation. Each lower-level interpreter can be said to implement the interpreter above it in
the hierarchy. Although the number of theorems that must be proved increases, the theorems are

typically simpler, and the overall proof effort is greatly reduced.

The following sections describe the architecture of each of the hicrarchical levels and summarize

the proof strategy used to verify VIPER. The hierarchical decomposition approach uses five levels:

a. VIPER instruction level—The RSRE specification. This is what the assembly-language pro-

grammer sees.

b. Macro Level—The high-level VIPER specification as an interpreter, it consists of 20 instruc-

tions.

c. Micro Level—The microcode level. Fach high-level instruction is implemented by a series of

microinstructions, which constitute the specification at this level.

d. Phase Level—This level decomposes the interpretation of a single microinstruction into the

parallel execution of a set of elementary operations.

e. Electronic Block Level--The “implementation” level of the microprocessor, described in terms

of blocks such as the registers and the ALU.

The following paragraphs describe each level.

17

Bits

2 2 3 1 4 20

rf | mf df cf ff tail T
Register Memory Destination Comparison Function 20-bit constant,
select select select flag select address or offset

Figure 3.1-1: VIPER Instruction Format

3.1 VIPER INSTRUCTION LEVEL

VIPER’s high-level architecture consists of three general-purpose 32-bit registers (called A,
X and Y), a 20-bit program counter (called P), and a single-bit boolean register (B) that holds
the results of comparison instructions, The registers X and Y are normally referred to as “index
registers” because they are most commonly used for address indexing, although they can also be
used as general purpose registers. There is also a STOP flag that is not accessible to a programmer,
but indicates an error condition in the machine. Any illegal operation, arithmetic overflow or

computation of an illegal address causes the STOP flag to be set.

A memory address is 20 bits, but the memory itself has 32-bit words. The address space is
divided into a memory space and a peripheral space each addressed by 20 bits. The distinction
between the two is made by an extra memory/I/O bit. Only the least significant 20 bits of the
program counter are meaningful, and loading a ‘1" into'any of the top 12 bits will cause the machine

to halt (viz., the STOP flag becomes true).

An instruction word is 32 bits long and consists of an operation code in the most significant
12 bits plus a 20-bit address. The address field is also used as an offset or constant by some

instructions. The opcode is further subdivided as shown in Figure 3.1-1.

The opcode subfields are not orthogonal and are interdependent in an intricate way. Briefly,

these fields have the following function:

rf: A 2-bit source register selector for the computation (A,X,Y or P).

mf: A 2-bit memory address control field that indicates the mode of fetching the operand from

memory (literal addressing, content addressing or offset addressing (offset X or Y)).

df: A 3-bit destination selector for an ALU computation (registers, memory space or I/0 space).

18

cf: A I-bit flag that indicates whether or not the instruction is a comparison.

ff: A 4-bit function selector to indicate which comparison (if instruction is a comparison) or which

computation is to be done by the ALU.

The specifications for this level are given in Appendix C.

3.2 THE MACRO LEVEL

Although the 12 opcode bits allow 4096 possible instructions, many of the combinations have
redundant subfields, or represent impossible conditions, so that there are only 122 unique possi-
bilities. We have split the 122 cases into 20 instructions. The operations that are supported by
these instructions fall into six categories: shifts, comparisons, arithmetic and logical operations,
procedure calls, memory read/writes and input/output instructions. The complete instruction set
ts listed in Table 3.2-1, with the meaning of the operand fields explained in Table 3.2-2. The HOL

definitions for the entire macro-level are in Appendix D.

The SHLS instruction is one of 20 instructions in our macro level. If the stop field is set,
there is no state change. The new value for the program counter is computed by adding 1 to the
current value. If the address is invalid, the stop field is set. Otherwise, the register to be shifted
is determined, and the shift performed. Finally, the shifted result is written to the appropriate

register and the overflow bit is set if appropriate.

The specification is described in more detail in Section 5.2. To verify that the macro-level
realizes the VIPER instruction level it is necessary to map each of the 20 macroinstructions to the
12 opcode bits of the VIPER level. A decoder function is introduced that maps the 12 opcode bits
into a 5 bit instruction field (for 20 instructions) and (nearly) orthogonal fields corresponding to
source register select (2 bits), memory mode select (2 bits) and destination register select (2 bits).
The comparison flag and function select fields of the VIPER instruction level are not needed at the

macro level.

19

20

Mnemonic Operands Effect

NOOP dreg, sreg No operation

SHRS dreg, sreg dreg := sreg shifted right (copy sign bit)
SHRB dreg, sreg dreg:= sreg shifted right through B
SHLS dreg, sreg dreg := sreg shifted left; STOP := overflow
SHLB dreg, sreg dreg := sreg shifted left through B
hline COMPARE | ff, sreg, m compare sreg and m, depending on ff
hline ADDB dreg, sreg, m | dreg := sreg + m; B := carry

ADDS dreg, sreg, m | dreg := sreg + m; STOP := overflow
SUBB dreg, sreg, m | dreg := sreg - m; B := borrow

SUBS dreg, sreg, n | dreg := sreg - m; STOP := overflow
NEG dreg, m dreg := -m

ANDM dreg, sreg, m | dreg := sreg AND m

NOR dreg, sreg, m | dreg := sreg NOR m

XOR dreg, sreg, m | dreg := sreg XOR m

ANDMBAR dreg, sreg, m | dreg := sreg AND m-complement
CALL m Y =P;P:=m

WRITEMEM sreg, addr mem(addr] := sreg

READMEM dreg, mem dreg := m (from memory space)
WRITEIO sreg, addr io[addr] := sreg

READIO dreg, mem dreg := w ({from io space)

Table 3.2-1: VIPER macroinsiructions

sreg = source register (one of A, X, Y, P)
dreg = destination register (one of A, X, Y, P)

STOP = flag which indicates machine has stopped

B = flag set by comparison operators and if overflow occurs
m = tail if mf=0

(tail) if mf=1

(tail+X) if mf=2

(tail+y) if mf=3
addr = tail if mf=1

tail+X if mf=2

tail+y if mf=3

Table 3.2-2: Decoding operand fields
3.3 MICRO LEVEL

Our proof of VIPER is based on a micro-coded design in order to be able specify VIPER as a
hierarchy of interpreters using the paradigin described in (ref. 4). As a result, we are able to take

advantage of the proof simplification afforded by this method.

Each macro level instruction is implemented by a series of microinstructions. The microcode
execution traces for each macro instruction are presented in Appendix F. For example, the mi-

croinstruction trace for the SHLS instruction is illustrated in Figure 3.3-1

The microprogram that implements the SHLS instruction uses 10 of the approximately 100
microinstructions supported by the micro level. Many instructions use the same microinstruc-
tions, e.g., for fetching instructions, incrementing the program counter, etc. The microinstruction
AXY_WRITE assures that the destination register is one of a, x, y. For this instruction, the
destination cannot be the program counter. The microinstruction SHLS_ui performs the actual

shift and the write to the destination register.

A symbolic description of the VIPER microinstructions and the specification of the entire

micro level are given in Appendix E. The microinstruction format is described in Section 3.5.9.

21

Cycle uCode uLoc Comment

t fetch_ul fetch macro instruction

t+1 fetch.u2 increment pc
t+2 fetch.ul invalid address (> 20 bits)?
t+3 fetch_u4 ir — macro instruction

t+4 jmp_reqm require memory?

[B S A T T =]

t+5 jmp-opc jump to noop+instruction number

t+6 AXY_WRITE 10 destination must be register A, X or Y

t+7 SHLS.ul 11 shls operation
t+8 NO.OVL 12 result must not overflow
i+9 NOOP 13 jump to fetch next macro instruction

Figure 3.3-1: Microwstruction sequence for SHLS
3.4 PHASE LEVEL

The phase level, although it is the lowest level interpreter in the hierarchy, is more properly
considered to be equivalent to the EBM level, rather than an abstraction of it. In particular, the
phase and EBM levels share the same state and clock. Each phase in the system clock is associated
with an instruction in the phase-level interpreter. The inputs to the phase-level interpreter consist
of a bit-translation of the microinstructions defined for the micro level. In this way, the phase-level

interpreter implements the micro-level interpreter.

Each microcycle (the time it takes to complete a single niicroinstruction) is composed of three
phase cycles. The specification for the phase level, in Appeudix H, has a separate definition for

each of the phase cycles. The events that occur during each phase are described in Section 3.5.2.

The result at the first of three phases can be described in a simple way. At this level the
state consists of a list of general-purpose registers (including a, x, y, p and others), registers
to hold temporary results, the current instruction, ‘data in and data out to memory (or 1/0),
the memory, b and stop bits, the memory address register and a result register for the ALU, the
microprogram counter, the microinstruction register, the micro-ROM contents, 2 latches, and phase
bits (to indicate the current and next phases). If the stop bit is set there is no state change, except
to indicate there is no next phase. Otherwise, the contents of the micro-ROM as defined by the
microprogram are fetched and control proceeds to phase 2. The other phases are similar, but much

more complex, due to the complexity of the steps performed.

22

3.5 ELECTRONIC BLOCK LEVEL

The Electronic Block Model of VIPER used in the proof differs from the original RSRE design
in several ways. Unlike the original design, the block model is microcoded to enable the use of
the hierarchical decomposition proof method. The external interface is also different from that of
the RSRE design in that it does not include certain input and output signals that have no effect
with regard to the top-level specification. These signals were also ignored in Cohn’s proof effort
(ref. 18). Our VIPER Electronic Block Model js shown in Figure 3.5-1 and the EBM specification
is in Appendix I.

3.5.1 THE DATA PATH

The data path consists of the registers at the phase level in addition to a few others (M, ONE
and INS) that are used as internal scratchpad registers. INS is the instruction register, M is a
temporary register used in operand computation and ONE holds the numerical constant ‘1’ Each
of the programmer-accessible registers can output its contents onto the internal bus labeled r and
the other registers can output contents onto the m bus. The least-significant 20 bits of P and INS
can also be output to the MAR input bus. These registers can be loaded witl either the ALU result

or the word fetched from memory {DIN).

The m and the r buses feed into a 32-bit ALU that performs functions depending on the values
of aluctl (the ALU control signal from each microinstruction), £f and the B flag. The overflow
and result of an operation are fed into both the register block and the micro-sequencing logic unit,

which sets the STOP flag when an invalid result is generated in some contexts.

To communicate with memory, there is a 20-bit memory address register MAR, and two 32-bit
data registers DIN and DOUT. The MAR can be loaded in parallel with an ALU operation. The MAR

and DIN registers are loaded only if the r signal is set, and DOUT is Joaded only if the w signal is set.

The instruction decoder unit takes in 12 bits of opcode from the INS register and the B flag,
and sets the STOP flag if the opcode is illegal. Otherwise, it generates a condensed opcode. It
also generates a signal reqm that denotes whether or not the instruction requires computation of

an operand. This information is used by the microcode for branching purposes.

The STOP flag is set by hoth the instruction decoder and the micro-sequencing logic units.
This is due to the fact that the machine could halt for two reasons - illegal instruction format

(static error cases) and illegal operations during instruction execution (dynamic error cases). More

23

/ JAA!

et O

Figure 3.5-1: Electronic Block Medcl

7
Vi .ﬂ a
/1 2
\\
1 i
/ \“ \M
\Aw y o yi (] >
Je: % 7% HuuaHdN
—_—
| | _L_h_lnlﬂ A [€ " 013F v
y
LTI NG VDJ\Q
A_ ¥In) 1€] i /\
LW " 4
A R (LI _ T 1
_ _ 0
Sl 1p \ / g ww
FY0LS-0UIIH _ p |b _ At ,
' * 00 _ A1 [HOLvTH]||[HOLVTH | .
__ ; K A \
S | B S , . "
i) S ARk " "
- S 4 4 <! -.u.u-..uu..uu»..'__._.a|4 K
'y ' ' r1r
r - T OdM ONI | ' _ " "
_ _ - 0z 2t
X -5l e ro1sp| ¢ s
I gL 1501 | I L IR P e e I
A ! 0 ' .
! yAL ' ¢ . -
! RXOH e 7,77 T |DNIDNIND3S o »mwmm u AT 1A
“ Aw 1) vy | o A wagooda L] . =
N A — 5°% NOTLONWISNI| . NO0TE P
: L wpel . />do Zr| wasom VRN
Y I B Sy s S ¢t T
o hooT FIIIIIIN L Lo -
' 1 yi .
. HSVHd € - - . 77 |dois L
_r |||||||||| l".. Y T pug ey (e SO K dhaiiad d d - e - >
231y ¢
oy Je 3@ E
VOO —— {0 RGEEL XOH
[z 0)3P

v’

o E <

24

maddr seq.ctl [alu_ctl T |w iolmrf |mdf de|re ds|ms

Idfc
rfc

dec_ctl adrs

Frigure 5.5-2: Micromstruction Format

reciscly, the static errors canught are:
A B

¢ Unused opcode.

o A Call instruction without the P register as the destination.

o P register as the destination for certain instructions.

A Write instruction without an address operand.

while the dynamic errors that cause the machine to go to a stop state are:

o Value of P register overflows 20 bits after incrementing.
e The address after indexing overflows 20 bits.

Overflow on ADDS instruction.

Overfllow on SUBS instruction.

Overflow on SHLS instruction.

P register as the destination and value overflows 20 bits.

3.5.2 THE CONTROL UNIT

In this section, we will explain the part of the block model that generates signals for the Data

Path section.

Microinstruction Format A microinstruction is 31 bits long. Its format is as shown in Fig-

ure 3.5-2. The interpretation of the microinstruction fields is given below.

25

maddr: address in the microcode, 7 bits

seqctl: 3 control lines for the micro sequencing logic:

(000) stayidle

(001) if reqm=true then mc := true; jaddr := maddr+mf[0..1]

(010) mc:= true; jaddr := opc[0..4] + maddr

(011) mc:= true; jaddr := maddr

(100) if overflow=true then stop:=true

(101) if (msb 12 bits of res has a 1) then stop := true

(110) if ((df[0..2]=3 or 4 or 5) V (msb .12 bits of res has a 1)) then stop := true
(111) if(df[0..2]=4 or 6) then stop:=true

aluctl: 4 control lines for the ALU, interpreted as:

(0000) res 1=

{(0001) res i= r

(0 010) B := COMPARE(f, r. m, b)
(0011) res = -ni

(0100) res = r+m; B o= carry
{(0101) res 1= r+m

(0110) res := r-m; B := borrow
(0111) res 1= r-m

(1000) res := r XOR m

(1001) res := r AND m

(1010) res := r NOR m

(1011) res := r AND NOT m
(1100) res := 7> |, copy sign bit
(1101) res ;= r > 1, shift through B
(1110) res := r < 1, overflow := msh
(1111) res ;= r &€ 1, shift through B

dec_ctl: control line to disable/cnable the stop output of the instruction decoder
r: read signal
w: write signal

io: read/write from io (if true) or memory (if false)

mdf: destination sclect for alu result (for intermediate operations required by the instruction); 3
lines, decoded as:

(000) A
(001) X
(010) Y

26

(011) P
(100) P
(101) P
(110) M
(111) ADDR

mrf: source register select (for intermediate operations required by the instruction)

(00) A
(01) X
(10) Y
(11) P

rfc: MUXR control line to decide which of rf/mrf is used to select source register

dfc: MUXD control line to decide which of df/indf is used to select destination of alu result
de: data enable, to enable data from memory to be written into reg block

re: res enable, to enable the ALU output to be written into reg block

adrs: address select, to select one of P/ADDR as the address

ds: data select, to select one of M/INS as destination of data from mem/io

ms: m select, to select one of Nl/ONE/ADDR to cowme out on the mn bus

Microinstruction Specification A symbolic description of the VIPER microcode and the spec-
ification for the micro level are given in Appendix E. As an example, consider the microinstruction
number 19: SHLS_u2, the microinstruction that carries out the shift-left operation once the registers

have been determined.

The state relevant to the microinstruction is that of the micro level, in particular the list of
general purpose registers, the temporary (m), instruction, data input and data output registers, the
memory, the overflow and stop bits, the memory address register, the (ALU) result register, the
microprogram counter, and the reset bit. The RSF field determines the source field—the register
whose contents arc to be shifted. Assuming the stop bit is not set, the register determined by
the DSF field receives the shifted contents of the source register, and the microprogram counter is

incremented. All other state variables are unaffected.

27

Microinstruction Timing Each microcycle is composed of three phase cycles, and the net effect
of a microinstruction is an accumulation of effects of the three phases in sequence. Briefly, the events

during each of the phases are as follows:

a. Load the next microinstruction to be executed into the microinstruction register MIR.

b. Gate the register values into the MLATCH, RLATCH. Load MAR with P or ADDR if r (read signal)
is true. Load DOUT if w (write signal) is true. Set the STOP flag if either of the two stop

conditions is true.

c. Load DIN with the value from memory if the read signal is true. Load the ALU result of data
from memory into the register block. Load MPC with the address of the next microinstruction.

Load RES and OVL with the ALU result and ALU overflow, respectively.

Microinstruction Sequencing The address of the next microinstruction is either MPC + 1 or
jaddr, which is computed by the micro-sequencing logic depending on all its inputs. The manner
in which it is computed is given in the previous section as the explanation of the seqctl field of a

microinstruction.

28

4.0 PROOF METHODOLOGY

The basis of this verification is the use of a package in 1IOL for abstract representation of func-
tions and also a generic model for interpreters based on Windley’s thesis. These two methodologies
provide a way to separate critical control aspects from implementation-level details of concrete data
operations. Each of these applications of abstract representations is explained before describing

details of the verification of our VIPER design.

4.1 ABSTRACT OPERATIONS

The primitive functions performed by the machine and used in the specification of higher-level
actions are defined as abstract operations. The HOL specification of these operations is shown in
Figure 4.1-1. In particular, one may note that the operations are typed using type variables instead

of concrete types (i.e. *wordn instcad of wordn).

Abstract functions are packaged together into abstract representations, which makes such “def-
initions” possible. Each abstract function can only appear once in any one theory, and the abstract
representation can be accessed through the name of any of the functions defined in it. The type
rep_ty given in Figure 4.1-2 is populated by all instances of the abstract representation defined in
Figure 4.1-1. Any one function in an abstract representation can be used to key into a particular
set of functions; in this case the function opcode is defined in Figure 4.1-1 and is used as a key in
Figure 4.1-2. The universally quantified variable rep represents all possible instantiations for the
set of abstract functions. The abstraction structure then becomes a parameter for all the other

specifications that depend on these functions.

In our work, the functions of this abstract structure are given no meaning other than that
illustrated in Figure 4.1-1. For example, all we say about add is that it maps two *wordn’s into a
*wordn. At all levels of the hierarchy add has only this meaning. Although not relevant to our proof,
the exact meaning of add could be specified and shown to be correctly realized by an implementation
of the ALU. This definition of add is reflected up to the instruction-level specification, and then

assembly language programs referring to add could be verified.

29

new_theory ‘aux_def’;;

let abs_rep = new_abstract_representation {
% ALU functions %

% negation %

(‘neg’, ":(*wordn -> syordn) ")

v addition without carry %
(‘add‘, ":(*wordn # *wordn —> *wordn) ")

% shift left through b %
(‘shlb‘,”:(*wordn # bool -> *wordn) ")

Y% Coercion functions %
Y numeric value of n-bit word %
(‘val®, ":(*wordn -> num) ')

% Test functions %
¥ see if address is valid %
(‘valid_address‘, v. (swordn -> bool) ')

%,decoder %
(*decode‘, ":((*opcode # bool) -> (bool # bts # bool)) ")

% Subranging functions %
% opcode portion of word
(‘opcode‘, ":(*wordn -> *opcode) ")

% Memory functions %
¥ fetch a word from memory %
(t*fetch', “:((*memory # xaddress) -> *wordn) ")

close_theory();;

Fagurc 4.1-1: Abstract representation of operations

30

new_parent ‘aux_def‘;;
let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let load_m = new_definition(‘'load_m*,
“! (rep:“rep_ty) (a:*wordn) (x:*wordn) (y:*wordn) (p:*wordn)
(ir:svordn) (ram:*memory)
load_m rep (a, x, y, p, ir, ram) =

Figure {.1-2: Using an abstract representation

let cpu_abs = new_abstract_representation

(‘inst_list‘,":(*key#(#state->tenv—>*state))list");
(‘key‘,":*key->num");

('select‘,":*state—>#env—>*key“);
(‘cycles',":*key->num");
(‘substate’,":*state’->*state");
(‘subenv',":%env’->*env");
(‘Impl‘,":(time’->*state’)->(time’'->*env’)->bool");
(‘count‘,":tstate’—>#env’—>*key’");
(‘start’,":*key’")

1

Figure 4.2-1: Abstract representation of a processor
4.2 VERIFICATION USING AN ABSTRACT INTERPRETER MODEL

The abstraction mechanism illustrated above is used not only to define the basic operations
performed by the machine but also to model an “abstract” interpreter, or a general model for a
processor that performs any given set of instructions. All the proofs of correctness of this abstract
model of a processor are completed; thus all that is needed is to show that the specification and the
implementation correspond to the same instantiation of the generic processor. These follow from

the verification of a small set of proof obligations.

The components of an abstract interpreter are specified as shown in Figure 4.2-1. The complete
specification is given in Appendix B. At any time, the pair (state, environment) selects a unique
instruction to be executed next, through a given key. Each instruction provides a mapping from
(state, environment) to state. The implementation (IMPL)is described as a predicate characterizing

the state and environment values associated with the lower (implementation) level.

The abstraction specified by cpu_abs is used in the definition of two properties. INTERP, given

31

let I_rep_ty = abstract_type ‘gen_I' ‘key‘;;

let INTERP_def = new_definition
(“INTERP®,
“I (rep: I_rep_ty) (s:time->*state) (e:time->*env) .
INTERP rep s e =
't:time.

let n = (key rep (select rep (s t) (e t))) in (
s(t+1) = (SND (EL n (inst_list rep))) (s t) (e t))"
)i

Figure {.2-2: Specification of the inlerpreter

let impl_imp_def = new_definition
(“IMPL_IMP®,

") inst:(*key#(*state->xenv->*state))
(s’:time’->*state’)
(e’:time’->*env’) .

IMPL_IMP rep s’ e’ inst =
(Impl (rep:~I_rep_ty) s’ e’) ==>

('t:time’.
let s = (\t. {substate rep (s’ t))) in
let e = (\t. (subenv rep (e’ t))) in
let ¢ = (cycles rep (select rep (s t) (e t))) in (

(select rep (s t) (e t) = (FST inst)) /\
(count rep (s’ t) (e’ t) = (start rep)) ==>
((SND inst) (s t) (e t) = (s (t + ¢))) é\
= (s

(count rep (s’ (¢t + c)) (e’ (¢t + ¢)) tart rep))))"

Figure §.2-3: Implementation of the mterpreter

in Figure 4.2-2, denotes the fact that the state at the next cycle (s (t + 1)) must be the same

as that specified by the instruction (SND (EL n (inst_list rep))), where the instruction itself

is chosen by some lunction of the state and environment (select rep (s t) (e t)).

The other important property is represented by IMPL_TIMP, sliown in Figure 4.2-3. This function

defines a function which, given the opcode of an instruction, asserts that if inst is the instruction

currently selected, then after allowing the number of cycles necessary for the implementation to

execute this instruction, the state is that specified by the instruction.

These two properties represent the semantics of an interpreter, one dealing with the state

function and the other dealing with the meaning of each instruction. One step in the verification

of a processor is to show that, if all the instructions are implemented correctly, then the next-state

function’s correctness follows. It is this step that is simplified by the use of the generic model.

32

new_theory_obligations

L
WEVERY (INPL_IMP (rep:~I_rep_ty) (s’:time’->*state’) (e’:time’->*env’))
(inst_list rep)"

‘\k:#key. (key (rep:~I_rep_ty) k) < (LENGTH (inst_list rep))”
"‘!k:*key .k = (FST (EL (key (rep:~I_rep_ty) k) (inst_list Tep)))"

1

Figure §.2-4: Obhigations of the wnterpreter model

To obtain the proof of correctuess of the interpreter, one must first fulfill the necessary theory

obligations, displayed in Figure 4.2-4.

The first of these theory obligations refers to a property to be maintained for each of the
instructions. This property states that each instruction is implemented correctly. This is the most
significant of the obligations as it is the most difficult to satisfy. The other two obligations relate to

the ordering of the instructions, and to the fact that each opcode maps to a particular instruction.

Once all the proof obligations are discharged, the rest of the proof is completed automatically,
by using the above properties as lemmas. For example, Figure 4.2-5 shows how a simplified version
of TMPL_IMP is used in proving an intermediate lemma; in the code shown in Figure 4.2-6 we may
observe how this lemma is used in the final proof of correctness of the processor—that the property

INTERP (see [igure -1.2-2) holds at all times.

The use of the interpreter model thus becoues clear: the human verifier will “only” need to be
concerned with the proof of each instruction and a few additional properties about the list structure
of the instructions (the opcode); the interpreter model then combines all these proofs into a final

proof of correctness for the processor.

4.3 HIERARCHICAL PROOF

Even when using the interpreter model to organize the proof effort, the verification of the
RSRE VIPER micro-processor still involved a large number of cases to be verified, each of them
quite complex. As explained previously, we have solved this problem by designing the architecture

of the processor as a five-level hierarchy.

33

let %%PL_NEXTSTATB_LEHMA = TAC_PROOF

"let s = (\t:time .(substate rep (s’ t))) and
e = (\t:time .(subenv rep (e’ t))) in (
(Impl (rep:~I_rep_ty)) s’ e’ ==>
(tt:time’ .,
(count rep (s’ t) (e’ t) = (start rep)) ==>
((substate rep (s’ (t+(cycles rep (select rep (s t) (e t)))))) =
(SND (EL (key rep (select rep (s t) (e t)))
(inst_list rep))) (s t) (e t))))"),

L

EXPAND_LET_TAC
THEN REPEAT STRIP_TAC
THEN POP_ASSUM_LIST (\asl .
let asl’ =
map (PURE_REWRITE_RULE (EVERY_EL; IMPL_IMP_EXPANDED]) asl in
THENHAP_EVERY ASSUME_TAC

THEN FIRST_ASSUM (ACCEPT_TAC o SYM_RULE)

Figure 4.2-5: Intermediate lemma n final proof

let IMPL_I_CORRECT = prove_thm
(‘IMPL_I_CORRECT,
“let 3 = (\t:time .(substate rep (s’ t))) and
e = (\t:time .(subenv rep (e’ t))) in (
(Impl rep) s’ e’ /\
((count (rep:-I_rep_ty)) (s' 0) (e’ 0) = (start rep)) ==
let 1 = time_shift (\st env. (cycles rep (select rep st env))) s e in
(INTERP rep) (s 0 £) (e o £))",

EXPAND_LET_TAC
THEN REPEAT GEN_TAC
THEN PURE_REWRITE_TAC [INTERP_DEF_EXPANDED;o_DEF]

THEN
THEN IMP_RES_TAC IMPL_NEXTSTATE_LEMMA_EXPANDED

Figure .2-6: Correctness of the interpreter

34

The interpreter model is used for all the proof levels. For example, at one level we consider
the instantiation of the interpreter where the instruction list consists of the macro-instructions and
the implementation is given by the micro-code. At another level, there is the instantiation with the
instruction set being the micro-instructions and the implementation consisting of the phase-level

description of the architecture.

The next sections describe proofs of the various levels in more detail. Each of these proofs con-
sists of specifying the instruction set and the implementation, proving all the numerous lemmas—
one for each instruction—that constitute the proof obligations, and then instantiating the proofs

of correspondence for that level.

Chapter 5 presents the specification of the macro level (the second from the top in our five level
hierarchy) in more detail than given in Chapter 3. Proof obligations are generated that relate to
showing that the macro specification is correctly realized by the micro-level specification (including

the microcode).

Chapter 6 presents the specification of the micro level and the proof that it is correctly realized
by the phase-level specification.
Chapter 7 presents the specifications of the phase and electronic-block levels and proof of

correspondence.

Finally, Chapter ¥ presents the proof of the macro level with respect to the RSRE specification.
We left this proof for last as the RSRL specification could not be conveniently captured in the

generic interpreter theory.

35

5.0 MACRO LEVEL SPECIFICATION AND PROOF OF MICRO LEVEL

5.1 INSTANTIATION OF THE INTERPRETER

The macro-level view of VIPER is mapped to the interpreter model through the definition
given in Figure 5.1-1.

The first parameter of INTERP is the set of macroinstructions macro_inst_list. The machine
is specified by the action of 20 instructions, listed in Figure 5.1-2. Theinstruction NOOP_M is repeated
so as to fill the opcode space up to 32 instructions. Each of these instructions is defined according
to its effect on the state of the micro-level machine, defined in Figure 5.1-3. In the macro level,
the processor state consists of the four data registers a, x, Y, and p, the (overloaded) overflow
flag register b, the stop signal, and the memory. Each instruction is specified as a function from a
state to another state. The effect of an instruction on the state also depends on the reset signal,

which is set by external processes and, thus, is not a part of the state under consideration.

Other parameters for instantiating the generic interpreter are:
* Opcode and Opc_Val: functions to select the macro-level opcode from the macro state and to
instantiate the key, i.e. to index into the instruction list.

¢ MacrolevelCycles: a function that maps each instruction to the number of minor (i.e. micro)
cycles necessary to complete the execution of the instructions; this number corresponds to

the number of micro-instructions necessary to implement each macro-instruction.

* Micro_state_to_Macro_state: a function that indicates which parts of the micro-level state

let Macro_Int_def = new_definition
(‘Macro_Int_def‘,
"! (rep:“rep_ty) (s:time->"macro_state) (e:time->"macro_env)
Macro_Int rep s e =
INTERP

(macro_inst_list rep, Opc_Val, Opcode rep,
MacroLevelCycles, Micro_state_to_Macro_state rep ,
(I:“micro_env-)‘macro_env), Micro_I rep,

GetMPC, “FETCH_ADDR, @x:one.F)

Figure 5.1-1: Macro-level viewed as an interpreter

37

w2 | IRTENTONTTE® IR

PRECEDING FAGE BLANK NOT FILMED

let macro_inst_list =
(‘macro_inst_list‘,
"1 (rep: rep_ty) .
macro_inst_list rep =
[((F,F,F,F,F),ABS_ERV

((F,F,F,F,T),ABS_ENV
((F,F,F,T,F),ABS_ENV
((F,F,F,T,T),ABS_ENV
((F,F,T,F,F),ABS_ENV
((F,F,T,F,T),ABS_ENV
((F,F,T,T,F),ABS_ENV
((F,F,T,T,T),ABS_ENV
((F,T,F,F,F),ABS_ENV
((F,T,F,T,F),ABS_ENV
((F,T,F,T,T),ABS_ENV
((F,T,T,F,F),ABS_ENV
((F,T,T,F,T),ABS_ENV
((F,T,T,T,F),ABS_ENV
((F,T,T,T,T),ABS_ENV
((T,F,F,F,F),ABS_ENV
((T,F,F,F,T),ABS_ENV
((T,F,F,T,F),ABS_ENV
((T,F,F,T,T),ABS_ENV
((T,F,T,F,F),ABS_ENV
((1,T
«T,T

new_definition

(NOOP_M rep));
(SHR rep));
(SHRB rep));
(SHLB rep));
(SHL rep));
(CMP rep));
(WRITEM rep));
(WRITEIO rep));
(NEG rep));

((F,T,F,F,T),ABS_ENV (CALL rep));

(READIO rep));
(READM rep));
(ADDB rep));
(ADDS rep));
(SUBB rep));
(SUBO rep));
(XOR rep));
(AND rep));
(NOR rep));
(ANDMBAR rep));
(NOOP_M rep));

,T,T,F),ABS_ENV (NOOP_M rep)):

F
,T,T,T),ABS_ENV (NOOP_M rep));1");;

Figure 5.1-2: Macro-instruction lisl

let macro_state =

v (swordn#*wordn#*vordn#*wordn#bool#bool#*memory)”;;

% a x y P

let macro_env = ":(bool)";;

b stop ram %

Figure

38

S.o1-4: Statc as viewed by macro-mstruclions

let Macro_Int_IMPL_IMPL_DEF = new_definition
(‘Macro_Int_IMPL_IMPL_DEF',
“! (rep:-rep_ty) s’ e’ .
Macro_Int_IMPL_IMP rep s’ e’ =
IMPL_IMP
(macro_inst_list rep,
Opc_Val, Opcode rep, MacrolevelCycles,
Micro_state_to_Macro_state rep, (I:“micro_env—>‘macro_env),
Micro_I rep,
GetMPC, "FETCH_ADDR, Q@x:one.F) s' e’"

'

Frgurc 3.4-4: Obligation for macro-instructions

are visible at the micro-level.

o I: the identity function, which signifies that the environment visible to the macro-level is

identical to the one visible to the micro-level.

¢ Micro_I: the implementation, which is the {micro level) interpreter which executes the mi-

crocode, shown in Figure 6.1-1.

¢ GetMPC: a function that selects the micro-program counter from the state—the variable at

the micro level that holds the current microinstruction.

e the start address: the opcode that signals the beginning of every micro-level execution.

Comparing these parameters to the abstract parameters used in the specification of the abstract

interpreter illustrated in Figure 1.2-1 provides an illustration of how the abstraction mechanism

works.

Once we have an iustantiation of the generic interpreter, the next step is to satisfy the proof

obligations, the heart of which is to prove that each macro-instruction is implemented correctly by

the corresponding sequence of micro-instructions. In Figure 5.1-4 we can observe the instantiation of

the function IMPL_IMP (see Figure 4.2-3) for this interpreter; note that even though the opcode does

not appear in this instantiation, IMPL_IMP is a function that takes an extra numerical argument.

39

let write_reg = new_definition('write_reg',
"1 (rep:~rep_ty) (a:*wordn) (x:*wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ir:*wordn) (ram:*memory) (value:*wordn) (newb:beol).
write_reg rep (a, x, y, p, b, stop, ir, ram, value, newb) =
let dsfValue = (DSF rep ir) in

((dsfvalue = (F,F,F)) => (value, x, y, p, newb, stop, ram) |
((dsfvalue = (F,F,T)) => (a, value, y, p, newb, stop, ram) |
((dsfvalue = (F,T,F)) => (a, x, value, p, newb, stop, ram) |

(a, x, y, p, b, T, ram))))");;

Figure 5.2-1: The write xeg funclion

let SHLB = new_definition(‘SHLB',
"t (rep:"rep_ty) (a:*wordn) (x:*wordn) (y:*wordn) (p:*wordn)
(b:bool) (stop:bool) (ram:s*memory) .
SHLB rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
((-valid_address rep newp) =>
(a, x, y, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let 1ldr = (load_r rep (a, x, y, newp, ir)) in
let result = (shlb rep (idr, b)) in
let newb = (bitn rep 1ldr) in
write_reg rep (a, x, y, newp, b, 'F, ir, ram, result, newb)

I

Frgure 5.2-2: Erample macro-mstruction
5.2 EXAMPLE SPECIFICATION

The macro-instructions are specified in terms of auxiliary functions, one of which is shown in
Figure 5.2-1. The write_reg function defines which destination register is selected based on the

DSF field.

The machine instruction for “shift left using the b register” is specified as shown in Figure 5.2-
2. Given a particular state, the definition characterizes the state after the instruction is executed.
The machine can already be in a stop state, in which case it will continue to be in that state. It
will reach a stop state if the address of the next instruction (obtained by incrementing the program
counter) is illegal. In all other cases, the machine will compute the result of applying the shlb
abstract function to the contents of 1dr, storing the result in the appropriate register and storing

the bit shifted out into the b register.

40

let MK_INST_CORRECT_GOAL n =
let inst = term_list_el n
(snd(dest_eq(
snd(dest_forall(concl macro_inst_list))))) in
“!(rep:"rep_ty) (regs:time->(*wordn)list)
(m ins din dout:time->#*wordn) (ram:time->*memory)
(b stop ovl:time->bool) (mar:time->*address)
(res:time->*wordn) (mpc:time->bt7) (reset_e:time->bool).
(REG_LIST_LENGTH rep /\
DECODE_M_CORRECTLY_IMP Tep) ==>
(Macro_Int_IMPL_IMP rep
(\t. (reg t,m t,ins t,din t,dout t, ram t,b t,stop t,
ovl t, mar t, res t, mpc t))
(\t. reset_e t) “inst)";;

Figure 5.3-1: Function lo generate goals

5.3 PROOF OBLIGATIONS AND EXAMPLE PROOF

In this section we describe the theorem that, when proved, asserts that the machine instruc-
tions are correctly implemented by the micro-code, and show how this theorem is proved. The
proof consists primarily in showing that each of the 20 macro-instructions is implemented by its

microprogram. The microcode appears in Appendix F.

An action to be repeated many times is the generation of goals: one for every macroinstruc-
tion. The goals are generated using the function given in Figure 5.3-1, repeatedly for each of the
macroinstructions. ('I'le argument for the function is the vpcode; thus the function is iterated for

all values from 0 to 19.)

The proof of the SHLB instruction is sketched in Figure 5.3-2. The opcode for SHLB is 3. The
tactic FETCH_INST_TAC “simplifies™ the goal by evaluating the results of fetching the instruction.
Once the instruction is fetched and decoded, two cases arise: if the write to the destination register
results in an exception condition then the machine stops; if not then the operation terminates

successfully.

The proof may appear to be simple, but each of the tactics applied is very long and involved.

FETCH_INST_TAC geuneralizes many steps needed in the proof:

e it specializes Macro_Int_IMPL_IMP_LEMMA to the appropriate macro-instruction,
e creates and proves the subgoal that the instruction has been decoded correctly,
¢ considers the number of cycles necessary for finishing each instruction,

e considers the case in which the machine is already in a stop state,

41

set_goal(MK_INST_CORRECT_GOAL 3);;

expand(FETCH_INST_TAC 3
THEN REWRITE_TAC[write_reg_expanded ;load_r_expanded]

THEN SHIFT_SYMB_EXEC1_TAC
THENL

[SHIFT_BAD_DEST_TAC

. SHIFT_GOOD_DEST_TAC1

] THEN SHIFT_GOOD_DEST_TAC2
i

Figure 5.3-2: Proof of SHLB instruction
e or goes into stop state duc to an addressing exception.

The subgoal that remains is to prove the specific sequence ol micro-instructions for the given

instruction.

All the symbolic exccution steps also involve manipulating the tine aspects, and controlling the
number of assumptions generated by resolution and rewriting tactics. These steps involve several

layers of tactics, all of which are applied on each of the twenty goals (one for each instruction).

The proof for the other (19) instructions is similar to that of Figure 5.3-2. Each proof involves
the tactic FETCH_INST_TAC and REWRITE_TAC, but tactics that deal with symbolic execution of
the microcode and disposition of normal and error cases are a function of the instruction class in

question. Thus, there are specialized tactics for addition, reading and writing memory, 1/0, etc.

42

6.0 MICROCODE SPECIFICATION AND PROOF OF PHASE LEVEL

6.1 INSTANTIATING THE GENERIC INTERPRETER

The micro level of VIPER is also an instance of the generic interpreter, with the instruction
list consisting of the microinstructions and the implementation being represented by the phase-level
representation. The instantiation is given in Figure 6.1-1. It is useful to compare this instantiation

with the one illustrated in Figure 5.1-1. The arguments of both are analogous.

6.2 SPECIFICATION OF MICROINSTRUCTIONS

The microinstructions operate on a more detailed state than the macro-instructions, as shown
in Figure 6.2-1. Here, the four registers visible to the macro-instructions are modeled as a list of
registers instead of a tuple. The other registers are: a temporary register m, the instruction register
ir, and two memory data registers (for datain and dataout). T'wo boolean types represent the
values of the b flag and and stop signal, while the other one is the internal overflow signal. The
memory address register is of tvpe *address. The (temporary) value returned from the ALU is
stored in the res register. The value of the microprogram counter is of type bt7. The reset signal

is also visible.

The sequence of microinstructions needed to implement the SHLB macroinstruction is given
in Appendix F: the first five cycles are used to fetch the macro-instruction, an optional memory
fetch is performed (using up to seven additional cycles) and then four microinstructions specific to

SHLB are executed.

One of the four microinstructions (SHLB_u2) called in the execution of SHLB is specified in
Figure 6.2-2. This microinstruction, with opcode of 21, stores the value obtained by a left shift

into the appropriate register, assuming the stop bit is not sct.

43

let Micro_I_def = new_definition
(‘Micro_I_def’,
"1 (rep:-rep_ty) (s:time->"micro_state) (e:time->"micro_env)
Micro_I rep s e =
INTERP
(micro_inst_list rep,
bt7_val,
(GetMPC: “micro_state -> “micro_env -> bt7),
(PhaseCycles:bt7->num),
(Phase_Substate: Phase_state -> “micro_state),
(I:"Phase_env ->"micro_env),
Phase_I rep,
(GetPhaseClock: "Phase_state -> "“Phase_env -> triple),
PhaseClockBegin, 0x:one.F) s e"

)i

let Micro_I_IMPL_IMPL_DEF = new_definition
(*Micro_I_IMPL_IMPL_DEF',
"1 (rep: rep_ty) (s:time->"Phase_state) (e:time->"Phase_env)
Micro_I_IMPL_IMP rep s e =
IMPL_IMP
(micro_inst_list rep,
bt7_val,
(GetMPC: "micro_state -> “micro_env -> bt7},
(PhaseCycles:bt7->num),
(Phase_Substate: "Phase_state -> “micro_state),
(I:-Phase_env ->"micro_env),
Phase_I rep,
(GetPhaseClock: "Phase_state -> “Phase_env -> triple),

PhaseClockBegin, 0x:one.F) s e"

Figure 6.1-1: Micro levcl interpreter m terms of the generie interpreter

let micro_state =
" (((*wordn)list)#*wordn#*vordn#+*wordn#*vordn#*memory

% a, x, ¥, P m ins din dout ram %
#bool#tbool#bool#*address#*wordn#bt?)";;

% b stop ovl mar res mpc Y,

let micro_env = ":(bool)";;

Figure (.2-1: State as veewed by mucromsiructions

44

let SHLB_u2 = new_definition
(‘SHLB_u2‘,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
SHLB_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let sval = shlb rep ((EL (bt2_val(RSF rep ins)) regs), b) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr) |
(update_reg regs (DSF rep ins) sval, m, ins, din, dout, ram,
bitn rep (EL (bt2_val(RSF rep ins)) regs), F, F, mar, sval,
add_bt7 mpc 1)"

Figure 6.2-2: Erample microcede

let PROVE_IMPL_IMP_LEMMA n = (
TAC_PROOF (([],
MK_IMPL_IMP_GOAL n),
IMPL_IMP_TAC n)):;

let MK_IMPL_IMP_GOAL n =
let inst = term_list_el n
(snd(dest_eq(
snd(dest_forall(concl micro_inst_list))))) in
"!(rep:“rep_ty) (regs:time->(*wordn)list)
(mreg insreg din dout:time->*wordn) (ram:time->#*memory)
(b stop ovl:time->bool) (mar:time->*address) (res:time->*wordn)
(mpc:time->bt7) (mir:time->ucode) (rlatch mlatch:time->*wordn)
(ph1 ph2 ph3:time->bool) (reset:time->bool).
It

(!t.
(stop t ==> "ph1 t /\ “ph2 t /\ “ph3 t) /\
(ph1 t = “stop t /\ “ph2 t /\ "ph3 t) /\
(ph2 t = “stop t /\ “phil t /\ "ph3 t) /\
(ph3 t = “stop t /\ “phi t /\ “ph2 t)) ==

Micro_I_IMPL_IMP rep
(\t. (regs t, mreg t, insreg t, din t, dout t, ram t,
b t, stop t, ovl t, mar t, res t, mpc t, mir t, micro_rom,
rlatch t, mlatch t, phl t, ph2 t, ph3 t))
(\t. (reset t)) ~"inst";;

let IMPL_IMP_TAC n =
let inst = term_list_el n
(snd(dest_eg(
snd(dest_forall(concl micro_inst_list))))) in
let thm = el (n+1) instructions in
let find_Phase_I_term tm = (
let ((x,y),z) = ((dest_comb # I)
(dest_comb tm)) in
(x = "Phase_I (rep: rep_ty)")) 7 false in (
REPEAT STRIP_TAC
;ggg SUBST_TAC [SPEC inst Micro_IMPL_IMP_LEMMA]

) s

Figure 6.3-1: Correctness of micromstructions

45

let theorem_list =
instantiate_abstract_theorems
‘gen_I
[Micro_I_CORRECT_LEMMA;
Micro_I_LENGTH_LEMMA;
Micro_I_ORDER_LEMMA]

[
("rep:~I_rep_ty",
"(micro_inst_list (rep: rep_ty),
bt7_val,
GetMPC: "micro_state->"micro_env->bt7,
Phase_Substate: phase_state->"micro_state,
(1:-phase_env->"micro_env),
Phase_I rep,
GetPhaseClock: “phase_state->"phase_env->triple,
PhaseClockBegin:triple,@x:one.F)");
("e’:time’->*env’",
"(\t:time. (reset t):bool)");
("s’:time->*state’",
“(\t. (regs t, mreg t, insreg t, din t, dout t, ram t,
bt, stopt, ovl t, mar t, res t, mpc t,
mir t, urom, rlatch t, mlatch t, phl t,
ph2 t, ph3 t)):time->"phase_state")
]

‘MICRO;;
let correct_lemma = snd(hd theorem_list);;

let PHASE_IMPL_MICRO_LEMMA = save_thm
(‘PHASE_IMPL_MICRO_LEMMA',
BETA_RULE (
EXPAND_LET_RULE (
ONCE_REWRITE_RULE (Phase_Substate;I_THM;GetPhaseClock;PhaseClockBegin] (
BETA_RULE (
)ONCE_REURITE_RULE [SYM_RULE Micro_I_def] correct_lemma))))

Frgure 6.3-2: Correctuess of the micro level
6.3 PROOF OBLIGATIONS

As in the proof of the macro level, the correct implementation of each of the microinstructions
must be proved. Here the number of leminas needed is even larger than for the macro level—128
cases,corresponding to the 128 microinstructions—however all of them are appreciably simpler.

The process is repeated for each of the opcodes, as shown in Figure 6.3-1.

A single tactic (IMPL_IMP_TAC), when instantiated with the microinstruction number, suffices

to prove each of the 128 cases.

Once the proof obligations arc met, the correctness lemma follows automatically. The proof,
where the lemmas and instantiations are used to obtain the final theorem of correctness for this

lemma, is shown i Figure (.3-2.

46

7.0 PHASE SPECIFICATION, BLOCK SPECIFICATION AND PROOF

7.1 DESCRIPTION OF THE PHASES

Both the phase description and the block model manipulate the same state variables, given in
Figure 7.1-1. Note the correspondence between this view and the structure represented in 3.5-1.
Also note the variables introduced here (mir, urom, rlatch, etc.) not required in the micro-level

specification.

The actions specified by cach of the microinstructions are executed in three phases, each of
which affect different subsets of the state variables. In the first phase the value of the microinstruc-
tion register is set by fetching the appropriate microinstruction from the micro-rom, as indicated by
the value in the micro-program counter. This can be observed in the specification of phase_one_def

given in Figure 7.1-2.

In the second phase, the micro-instruction is decoded. I the microinstruction calls for a ‘read’
or a ‘write’ operation the {source or destination) address is fetched into the mar. In the case of
a ‘write’ the value to be written out is placed in dout. New values are also obtained for the two
inputs for the ALU: rlatch and mlatch. The HOL definition for the second phase is given in

Figure 7.1-3.

The destinations and other addresses are also checked for exceptions: in cases where any of
the micro-operations are invalid, the stop signal is set and the processor does not execute the third

phase; in other cases the machiue is ready to run the third phase.

In the third phase the result computed by the ALU is stored in the appropriate register, and
the address of the next microinstruction is computed and loaded into mpe, as shown in figures 7.1-4
and 7.1-5. The changes made during this phase are to the registers, the m register, the instruction
register, the datain latch (in the case of a ‘read’ instruction), the memory in the case of a ‘write’,

the flag b, the overflow indicator, the result from ALU, the mpc, and several others.

The three phases together, then, indicate the steps needed to execute a micro-instruction.

Each of the 128 instructions takes three phases.

47

let Phase_state =

":(*wordn)list # % regs %
(*wordn # % mreg %
(*wordn # % insreg %
(swordn # Y% din %
(*wordn # Y% dout %
(*memory # % ram %
(bool # % b %
(bool # % stop %
(bool # % ovl %
(*address # ¥, mar %
(Zwordn # % res ?
bt7 # % mpc %
(ucode # % mir %
((num -> ucode) # % urom Y
(*wordn # % rlatch %
(*wordn # Y, mlatch %
(bool # Y% phasel ¥

(bool # bool)))))))ININI))))";; % phase2, phase3 %

let Phase_env = ':bool";;

Frgure 7.0-1: State manmipulated by phase and EBM levels

let phase_one_def = new_definition
(‘phase_one_def’,

"1 (rep:-rep_ty) (regs:(*wordn)list) (mreg insreg din dout: *wordn)
(ram:*memory) (b stop ovl:bool) (mar:#address) (res:*wordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(ph1 ph2 ph3:bool) (reset:bool).

phase_one rep (regs, mreg, insreg, din, dout, ram, b, stop, ovl,
mar, res, mpc, mir, urom, rlatch, mlatch, phi, ph2,
ph3) (reset) =
stop => (regs, mreg, insreg, din, dout, ram, b, T, ovl, mar, res,
(F,F,F,F,F,F,F), mir, urom, rlatch, mlatch, F, F, F) |
(regs, mreg, insreg, din, dout, ram, b, F, ovl, mar, res,
mpc, urom (bt7_val mpc), urom, rlatch, mlatch, F, T, F) "

Figure 7.1-2: Description of first phase

48

let phase_two_def = new_definition
(‘phase_two_def’,

"t (rep:-rep_ty) (regs:(*wordn)list) (mreg insreg din dout:*wordn)
(ram:*memory) (b stop ovl:bool) (mar: *address) (res:*wordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(ph1 ph2 ph3:bool) (reset:bool).

phase_two rep (regs, mreg, insreg, din, dout, ram, b, stop, ovl,
mar, res, mpc, mir, urom, rlatch, mlatch, phl, ph2,
ph3) (reset) =
(regs,mreg,insreg,din,
%---- new dout ----%
(W mir => EL (bt2_val(Rfc mir => (Mrf mir)
| RSF rep insreg)) regs
| dout),
ram,b,
Y---- new stop -———%
((FST(decode rep(opcode rep insreg,b)) /\ (Dec_ctl mir))
\/ ((Seqctl mir = (F,F,T))

/\ (((FST(SND(decode rep(opcode rep insreg,b)))) (F,F,T,T,F))

(F,F,T,T,T)))

\/
((FST(SND(decode rep(opcode rep insreg,b))))
/\ ((MSF rep insreg) = (F,F)))
\/ (Seqctl mir = T,F,F) /N ovl \/
\/ (DSF rep insreg = (T,T,T)))),
ovl,
%---- new mar <—--—%
((R mir \/ W mir) => (Adrs mir => address rep insreg
| address rep (EL p_reg regs))

X | mar),
res,mpc,mir,urom,
Y%---- new rlatch ----%
EL (bt2_val (Rfc mir => (Mrf mir)

| RSF rep insreg)) regs,
Y%---- new mlatch ----%
((Ms mir = F,F) => mreg
| ((Ms mir = F,T) => wordn rep 1
| pad rep (address rep
insreg))),
F,F,
%-- whether to go to phase three or not --%
- ((FST(decode rep{opcode rep insreg,b))
/\ (Dec_ctl mir}) \/
\/"(DSF rep insreg = (T,T,T))))
")

Figure 7.1-3: Descriplion of sccond phase

49

let phase_three_def = new_definition
(‘phase_three_def‘,

“! (rep:“rep_ty) (regs:(*wordn)list) (mreg insreg din dout:*wordn)
(ram:*memory) (b stop ovl:bool) (mar:*address) (res:*wordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(ph1 ph2 ph3:bool) (reset:bool).

phase_three rep(regs, mreg, insreg,din, dout, ram, b, stop, ovl, mar, res,
mpc, mir, urom, rlatch, mlatch, phi, ph2, ph3) (reset) =

((Re mir =>
((Dfc mir /\ ((Mdf mir = (T,T,F)) \/ (Mdf mir = (T,T,T)))) =>

regs |
update_reg regs
(Dfc mir => (Mdf mir) | DSF rep insreg) b
(((Aluctl mir = F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>
mlatch |
((Aluctl mir = F,F,F,T) =>
rlatch |
((Aluctl mir = F,F,T,T) =>
neg rep mlatch |
(((Aluctl mir = F,T,F,F) \/ (Aluctl mir = F,T,F,T)) =>
add rep(rlatch,mlatch) |
shl rep rlatch |
shlb rep(rlatch,b)))))))))))))) |
regs),
(De mir =>
(Ds mir => mreg | din) |
((Re mir /\ Dfc mir /\
((bt3_val(Dfc mir =>(Mdf mir) | DSF rep insreg))=6)) =>
...... ((Aluctl mir = T,T,T,F) =>
shl rep rlatch |
shlb rep(rlatch,b)))))))))))))
mreg)),
(De mir =>
(Ds mir => din | insreg) |
((Re mir /\ Dfc mir /\

((bt3_val(Dfc mir =>(Mdf mir) | DSF rep insreg))=7)) =>
join rep (opcode rep insreg, address rep
(((Aluctl mir = F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>
mlatch |
...... shl rep rlatch |
shlb rep(rlatch,b))))))))))N))
insreg)),
(R mir => (Io mir => fetchio rep(ram,mar) | fetch rep(ram,mar)) | din),

dout,
(W mir=>(Io mir=>storeio rep(ram,mar,dout) |store rep(ram,mar,dout})| ram),

Figure 7.1-4: Third phase

((Aluctl mir = F,F,T,F) =>
bemp rep(rlatch,mlatch,b,FSF rep insreg) |
((Aluctl mir = T,T,T,T) => bitn rep rlatch | b))))),

F,

(((Aluctl mir = F,T,F,F) \/ (Aluctl mir = F,T,F,T)) =>
aovfl rep(rlatch,mlatch,add rep(rlatch,mlatch))
(((Aluctl mir = F,T,T,F) \/ (Aluctl mir = F,T,T,T)) =>

sovfl rep (rlatch,mlatch,sub rep{(rlatch,mlatch))
((Aluctl mir = T,T,T,F) => bitn rep rlatch | F))),

mar,
(((Aluctl mir
mlatch |
((Aluctl mir = F,F,F,T) =>
...... shl rep rlatch |
shlb rep(rlatch,b))))))))))))),

...((Seqctl mir = F,T,T) => Maddr mir | (F,F,F,F,F,F,F)))) |
bt7_ival((bt7_val mpc) + 1)),
mir,urom,rlatch,mlatch,T,F,F)"

F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>

Frgure 7.1-5: Third phase, continuation

51

let REG_EN_SPEC = new_definition
(*REG_EN_SPEC*,
w} get clk (in:time->*wordn) out .
REG_EN_SPEC set clk in out =
) it:time. out (t+1) = ((set t) /\ (clk t)) => in t | out t"

Figure 7.2-1: Reguster with enablc mput
7.2 DESCRIPTION OF BLOCK LEVEL

The block level is the lowest level of description in this verification, and consists of components
such as the ALU, registers, flip-flops, etc. Proofs of each of the components are straightforward,
although gate-level realizations can also be checked by testing. Small components, such as the
register in Figure 7.2-1, are specified by their behavior. These are used in the structural specification
of larger components such as the datapath. as shown in Figure 7.2-2. The components are linked
by existentially quantified variables, which represent the internal lines of the implementation. This

specification formalizes the block structure depicted in Figure 3.5-1.

7.3 PROOF OF THE BLOCK LEVEL

This proof also involves instantiating the generic interpreter model, as in the previous two

levels. The instantiation is illustrated in Figure 7.3-1.

To establish the first theory obligation, we prove that Phase_I_IMPL_IMP applies to each of
the three phases. The proof is relatively simple though it involves many rewrites and manipulation

of long descriptions; the basic tactic used in all three proofs is shown in Figure 7.3-2

The first obligation follows very casily from the proof of each of the lemmas. The other two
obligations are also relatively straightforward, as we have to reason about a list of only three
instructions. The prool is also wade simpler because the two levels share the same clock, and they

observe an identical state and environment. The final proof of correctness at this level is shown in

Figure 7.3-3.

52

let DATAPATH = new_definition

(‘DATAPATH',

"1 (rep: rep_ty) (din dout rlatch mlatch res mreg insreg:time->*wordn)
(b ovl reqm stop msl_stop ph2 ph3 rd wr io dfc din_en result_en

addr_sel din_sel :time->bool)

(mar:time->*address) (opc:time->bt5) (regs:time->(*wordn)list)
(r_sel m_sel:time->bt2) (rft mft:bt2) (result_sel mdf:time->bt3)
(daft:bt3) (ram:time->*memory) (aluctl:time->bt4)
(dec_ctl reset:time->bool).

DATAPATH rep din dout b mar rlatch mlatch res ovl opc reqm stop msl_stop
ph2 ph3 regs mreg insreg rft mft dft ram rd wr io mdf dfc aluctl
dec_ctl r_sel result_sel din_en result_en addr_sel din_sel
m_sel reset =

'titime.

? din_i mar_i rlatch_i mlatch_i result alu_ovl alu_b ir dec_stop.

((rft = RSF rep (insreg t)) /\

(mft = MSF rep (insreg t)) /\

(dft = DSF rep (insreg t)) /\

(REGISTER_BLOCK rep result din ph3 r_sel result_sel din_en result_en
addr_sel din_sel m_sel mar_i ir rlatch_i mlatch_i regs mreg insreg
dfc mdf b) /)

(MAR_SPEC (\t. ((rd t) \/ (wr t))) ph2 mar_i mar) /\

(REG_EN_SPEC rd ph3 din_i din) /\

(REG_EN_SPEC wr ph2 rlatch_i dout) /\

(EXT_INTERFACE rep rd wr io ph3 mar dout din_i ram) /\

(REG_SPEC mlatch_i ph2 mlatch) /\

(REG_SPEC rlatch_i ph2 rlatch) /\

(ALU_SPEC rep (rlatch t) (mlatch t) (result t) (alu_ovl t) (b t)
(alu_b t) (aluctl t) (FSF rep (insreg t))) /\

(REG_SPEC result ph3 res) /\

(FF_SPEC alu_ovl ph3 ovl) /\

(FF_SPEC alu_b ph3 b) /\

(INSDEC_SPEC rep (ir t) (b t) (dec_ctl t) (dec_stop t) (opc t)

(regm t)) /\
(STOP_SPEC stop dec_stop msl_stop ph2))"
)55

Figure 7.2-2: Dula path

let Phase_I_def = new_definition
(‘Phagse_I_def‘,
"! (rep:°rep_ty) (s:time->"Phase_state) (e:time->"Phase_env)
Phase_I rep s e =
INTERP

([ONE,phase_one rep;

TW0,phase_two rep;

THREE,phase_three rep],

triple_value,

(GetPhaseClock: "Phase_state -> “Phase_env -> triple),
(PhaseLevelecles:triple—>num),
(I1:"EBM_state->"Phase_state),
(I:"EBM_env->-Phase_env), EBM rep,
(GetEBHClock:‘EBM_state—>‘EBH_env—>bool),

) EBM_Start, ©x:one.F) s e"

let Phase_I_IMPL_IMP_DEF = new_definition
(‘Phase_I_IHPL_IHP_DEF',
“! (rep:“rep_ty) s’ e’.
Phase_I_IMPL_IMP rep s’ e’ =
IMPL_IMP
([ONE,phase_one rep;
TWO,phase_two rep;
THREE,phase_three rep],
triple_value,
(GetPhaseClock:‘Phase_state -> "Phase_env -> triple),
(PhaseLevelCycles:triple->num),
(I:"EBM_state->"Phase_state),
(I:"EBM_env->"Phase_env), EBM rep,
(GetEBMClock:'EBM_state->“EBM_env->bool),
EBM_Start, Qx:one.F) s’ ¢’"

Fagure 7.3-1: Instantiating generic mterpreter at phase level

let PHASE_EBM_TAC = .

PURE_ONCE_REWRITE_TAC [Phase_I_IMPL_IMP]

THEN REPEAT GEN_TAC

THEN BETA_TAC

THEN REWRITE_TAC [GetPhaseClock;PhaseLevelecles;
GetEBMClock;EBM_Start;phase_one_def;
phase_two_def;phase_three_det]

THEN SUBST_TAC [EBM_expanded]

THEN REPEAT STRIP_TAC

THEN POP_ASSUM_LIST (\asl. (MAP_EVERY (STRIP_ASSUME_TAC o SPEC_ALL)

THEN POP_ASSUM_LIST (\asl. (MAP_EVERY (STRIP_ASSUME_TAC o SPEC_ALL)

asl))
asl));;

Figure 7.3-2: Tactic for proving mdimdual phases

54

let theorem_list =
instantiate_abstract_theorems
‘gen_I'
(Phase_I_EVERY_LEMMA;
Phase I_LENGTH_LEMMA;
[Phase_I_KEY_LEMHAJ

("rep:~I_rep_ty",
*([ONE,phase_one (rep: rep_ty);
TWO,phase_two rep;
THREE, phase_three rep],
triple_value, (GetPhaseClock:‘Phase_state->‘Phase_env—>triple),
PhaselevelCycles, (I:"EBM_state->"Phase_state),
(I:‘EBM_env~>“Phase_env),
EBM rep, (GetEBHClock:‘EBH_state—>‘EBH_env—>bool). EBM_Start)'");
(“e’:time’->%env’",
"(\t:time. (reset t)):time->"EBM_env");
("s':time->*state’",
"(\t:time. (regs t, mreg t, insreg t, din t, dout t, ram t,
b t, stop t, ovl t, mar t, res t, mpc t, mir t, uronm,
rlatch t, mlatch t, phl t,
pPh2 t, ph3 t)):time->"EBM_state"):
]

‘PHASE®; ;

let EBM_IMPL_PHASE_LEMMA = save_thm
(*EBM_IMPL_PHASE_LEMMA®,
(ONCE_REWRITE_RULE [I_o_ID] (EXPAND_LET_RULE
(ONCE_REWRITE_RULE
[GetEBHClock;EBM_Start;I_THH;TIHE~SHIFT_DEGENERATE_LEHHA]
(BETA_RULE
(ONCE_REWRITE_RULE [SYM_RULE Phase_I_def] correct_lemma)))))

’ s

Figure 7.3-3: Proof of correctness of phase level

55

8.0 MACRO LEVEL CORRESPONDENCE TO RSRE SPECIFICATION

8.1 INTRODUCTION

This section describes the verification of our macro level with respect to the level that defines
the VIPER instructions. The VIPLER instruction level, as specified by RSRE, is not in the format
of our generic interpreter. Hence we are employing a style of proof here different from that used in

the other levels.

In general terms, the verilication described in this section involves showing that each possible
opcode in the VIPER level is realized by one of the 20 instructions at the macro level with suitable
values for the three fields: source register select, destination register select, and memory mode
select. The opcode is a 12-bit ficld, thus there are 2'? different values possible for the opcode. An
abstract decoder is assuined, which maps the 12 opcode bits of the VIPER level to an instruction

and to the three selection fields at the macro level.

The VIPER level is divided up into cases, each of which (with a few exceptions) corresponds
to one of the 20 macroinstructions. Then it is shown that these cases cover the 2!2 possible values

for the VIPER-level opcode fields.

8.2 METHODOLOGY

The NEXT [unction, as shown in Figure X.2-1.is the heart of the VIPER instruction specification.
The NEXT definition is primarily a decoding tree, which determines the subsequent state based on
the current values in the VIPER registers and memory. Ior instance, if the ’comp’ flag is set, the
machine will execute a compare operation. If a write operation is requested, VIPER will attempt

to execute a write operation.

Even though there are dilferent fields in the instruction register, namely DSF, CSF, FSF, and
MSF, the interpretations of these registers are not independent of each other. For example, MSF
is usually used to decide which addressing mode the processor will use to access memory, unless
FSFis (T,T,I,F), in which case MSF will be used to decide which shift operation the machine will
execute. This lack of orthogonality complicates the verification with respect to the NEXT function
because the verifier must “walk through” the decoding tree for each combination of DSF, CSF,
and MSF and determine the behavior of each instruction. This lack of orthogonality complicated

Cohn’s proof.

- 57

« -
R R C-4 AT DTN

PREOEDING PAGE BLANK NOT FiLMED

This definition cannot serve as the top level in the interpreter hierarchy, as we have defined
interpreters. An orthogonal instruction set has to be derived and used as the macro level—the top
level in the abstract interpreter hierarchy. Furthermore, to prove our implementation of VIPER,
we also have to prove that the our macro level is equivalent to the NEXT state definition as defined

by RSRE and used by Cohn.

The proof methodology is as follows. To define the top level in our hierarchy—the RSRE
level—first we define an interpreter using the RSRE definition of the NEXT state function of
Figure 8.2-1, referred to as cohn_NEXT:

Fgef ! (rep:"rep_ty) (s:time->"macro_state) (e:time->"macro_env)
cohn_Int rep s e =
(¢ ¢,
s(t+1) = cohn_NEXT rep (s t))

Then the goal to be proved is illustrated in Figure 8.2-2. It expresses the desired property
that for all possible states visible at the macro and VIPER levels, characterized by combination
of (a, x, y, p, b, stop, ram), the macro interpreter yields the same next state as the RSRE level

characterized by the NEXT function.

To minimize the cases we have to consider, we start with a decoder for the interpreter. The de-
coder in the interpreter is responsible for determining from the state 7-tuple the correct instruction
for the macro level. For each major case that the decoder generates, we define an instruction to han-
dle that case. For instance. if the C'SF bit is set, the decoder should select the CMP instruction—a
bit compare. If the DSF field is ('1I',1,1") and the CSFE bit is not set, the decoder should select the
WRITEIO instruction. Thus the somewhat ill-structured VIPER instruction set is mapped to an
orthogonal set. The cases for the decoder and the corresponding instructions are listed in Appendix

J.

8.3 DEFINING THE INSTRUCTIONS

The macro-level instructions can be divided conveniently into five classes of instructions. The
first class includes instructions that do not access memory. This class includes the shift instructions,
of which there are four: SHR, SHL, SHHRB, SHLB, for right and left shifts using or not using the b
register. There are four cases for cach shift instruction, corresponding to the four source registers

(a, X, y, p), as specified by the DS field. The load_r function performs this selection.

H8

NEXT (ram, p, a, x, y, b, stop) =

(stop => (ram, p, a, x, ¥y, b, T) in
((noinc \/ illegaladdr) \/ ((illegalcl \/ illegalsp)
\/ (illegalonp \/ illegalwr)) =>
(ram, newp, a, x, y, b, T) |
(comp => (ram, newp, a, x, y, COMPARE(fsf, source,
MEMREAD(ram, msf, addr, x, y, io, F), b), F) |
(vriteop => (MEMWRITE(ram, source, msf, addr, x, y, io),
newp, a, x, y, b, F) |
(skip => (ram, newp, a, x, y, b, F) |

let m = MEMREAD(ram, msf, addr, x, y, io, NILM(dsf, csf, fsf)) in

let aluout = ALU(fsf, msf, dsf, source, m, b) in
((df = 0) => (ram, newp, VALUE aluout, x, y,
BVAL aluout, SVAL aluout) |
((df = 1) => (ram, newp, a, VALUE aluout, y,
BVAL aluout, SVAL aluout) |
((at = 2) => (ram, newp , a, x, VALUE aluout, y,
BVAL aluout, SVAL aluout) |
(call => (ram, TRIM32TO20(VALUE aluout), a, x,
INCP32 p, BVAL aluout, SVAL aluout) |
(ram, TRIM32T020(VALUE aluout), a, x, y,
BVAL aluout, SVAL aluout)))))))))))

Pogrwre 5.2-00 VIPER s NEXNT Junclion

set_goal([],
“! (rep:"rep_ty) (a:time->#*wordn) (x:time->*wordn) (y:time->*wordn)
(p:time->*wordn) (b:time->bool) (stop:time->bool)
(ram:time->*memory) (t:time) .
(! (ram’:*memory) (p’:*wordn) .
((address rep (pad rep (address rep
(fetch rep (ram’, address rep p’)))))
= address rep (fetch rep (ram’, address rep p')))))
==>
((Macro_Int rep (\t. ((a t), (xt), (yt), (pt), (bt), (stop t),
(fetch rep ((ram t), address rep (p t))),
(ram t))) (\t.(reset t))) =
(cohn_Int rep (\t. ({(a t), (x t), (y tJ, (p t), (b t), (stop t),
(fetch rep ((ram t), address rep (p t))),
(ram t))) (\t.(reset t))))");;

Frgure 8.2-2: Goal for the vertfication step

59

The second class of instructions are those that write to memory: WRITEM and WRITEIOQ. There
are 16 subcases for the WRITEM instruction, corresponding to the possible selections of source and

destination registers. The proof entails reasoning about 4 subcases for each of the 4 instructions.

The above two classes of instructions do not require any memory read. The third set of
instructions are those that read memory, wherein the result cannot be used to modify the p register.

These instructions are: ADDB, SUBD, NEG, XOR, AND, NOR, ANDMBAR, and READIO.

There are four cases of memory load and six cases of output writes (three valid and three
invalid) yielding a total of 24 subcases for each of these instructions. The memory reads can be

generalized so there are only six subcases to be proved for each such instruction.

The fourth set of instructions are similar to the third set but they involve writing to the p
register, in effect achieving a jump or a goto. The specific instructions are: CALL, READM, ADDS,
and SUBO.

The specification for CALL is basically the same as the ADDB instruction except for some
minor difference in write_preg. Similar to the ADDDB instruction, there are six subcases for each

of these instructions.

The last class of instruction is what we call the compare instruction. We have decided to have
an abstract function bemp representing all sixteen cases of compare. The bemp function appears at
all levels, including the block level. The memory load is generalized so there is only one case to

prove for the compare instruction.

60

set_goal([],

"! (rep:“rep_ty) (a:*wordn) (x:*wordn) (y:*wordn) (p:#*wordn) (b:bool)
(stop:bool) (ram:*memory) .

(("(CSF rep (fetch rep (ram, (address rep p)))) /\

("(DSF rep (fetch rep (ram, .(address rep p)))=(T,T,F))) /\
("(DSF rep (fetch rep (ram, address rep p))=(T,T,T))) /\
(FSF rep (fetch rep (ram, address rep p)) = (T,T,F,F)) /\
(MSF rep (fetch rep (ram, address rep p)) = (T,T))) ==>

(SHLB rep (a, x, Y, p, b, stop, ram) =
cohn_NEXT rep (a, x, y, p, b, stop, ram)))");;

ligure 8.4-1: Goal for proof of SILB

8.4 PROOF OF SHLB

As in the previous scctions, we have chosen SHLB to illustrate the proof methodology. First

we identify the conditions on the VIPER-level state under which SHLB is selected, namely:

“CSF A

“(DSF = (T, T, T) VDSF = (T, T, F)) A

“((DSF = (T, F, T) A "b) v (DSF = (T, F, F) A b))
“FSF = (F, F, F, T) A

FSF = (T, T, F, F) A (MSF = (T, T))

Hence, the goal for the verification of SHLB can be written as in Figure 8.4-1. The goal states
that if the conditions for invoking the SIILB instruction are satisfied then the effects of the SHLB
instruction on the macro state are identical to those specified by the NEXT function. As a lemma

we have proved that the register selected at the macro level and the VIPER level is the same:

F U (rep:"rep_ty) (a:*wordn) (x:+*wordn) (y:*vordn) (p:*wordn)
(b:bool) (ram:*memory) .
(cohn_REG rep (RSF rep(fetch rep(ram, address rep p)).a,x,y,
add rep(p,wordn rep 1))) =
(load_r rep (a, x, y, add rep (p, wordn rep 1)},
fetch rep (ram, address rep p)))

We also have decomposed the NEXT definition into cases corresponding to each DSF value,
as illustrated in Figure 8.4-2. Thus we can rewrite the NEXT definition much faster in our proof.

There are six states for the DSF so six such-theorems are required.

We now dispose of simple cases (e.g., stop, invalid new program counter after increment) by

using the tactic illustrated in Figure 8.4-3.

61

F ! (rep:-rep_ty) (a:#wordn) (x:*wordn) (y:*wordnm)

p:*wordn) (b:bool) (stop:bool) (ram:*memory) .

(let fsf = (FSF rep (fetch rep (ram, address rep p))) in

let dsf = (DSF rep (fetch rep (ram, address rep p))) in

let msf = (MSF rep (fetch rep (ram, address rep p)J)) in

let rsf = (RSF rep (fetch rep (ram, address rep p))) in

let csf = (CSF rep (fetch rep (ram, address rep p))) in

let addr = (address rep (fetch rep (ram, address rep p))) in
let newp = (add rep (p, wordn rep 1)) in

let io = ((cohn_OUTPUT rep (dsf, csf)) V

(cohn_INPUT rep (dsf, csf, £fsf))) in
cohn_REG rep (rsf, a, x, y, newp) in
cohn_MEMREAD rep (ram, msf, addr, x,

y, io, cohn_NILM rep (dsf, cst, fsf)) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, wordn rep 1)) in

let r
let m

((("stop) A

("cst) A

(valid_address rep newp) A

(“(dst = (T,T,T))) A

(-(dsf = (T,T,F))) A

(dsf = (F,F,F)) A

(fsf = (T,T,F,F))) ==>

(cohn_NEXT rep (a, x, ¥y, p, b, F, ram) =

(cohn_VALUE aluout, x, y, newp,
cohn_BVAL aluout, cohn_SVAL aluout,
ram))))

Figurc 8.4-2: Lemmas for cases of DSTF

e (REPEAT GEN_TAC
THEN STRIP_TAC
THEN PURE_REWRITE_TAC[SHLB]
THEN EXPAND_LET_TAC
THEN ASM_CASES_TAC "stop:bool"
THEN IMP_RES_TAC cohn_stop
THEN ASM_REWRITE_TAC[]
THEN ASM_CASES_TAC "~ (valid_address (rep: "rep_ty)
(add rep (p, wordn rep 1))):bool™);;

e (IMP_RES_TAC (EXPAND_LET_RULE cohn_noinc)
THEN ASM_REWRITE_TAC[]
THEN ASM_REWRITE_TAC[]):;

e (ASSUM_LIST (\asl. ASSUME_TAC (REWRITE_RULE
[el 19 asl] (el 1 asl)))
THEN ASM_REWRITE_TAC[]);;

Pigure 8.4-3: Tactics proof of SHLB

62

F 1 (rep:"rep_ty) (fsf:bt4) (msf:bt2)
(dsf:bt3) (r:*wordn) (m:*wordn) (b:bool) .
(((tst = (T,T,F,F)) A (msf = (T,T))) ==>
(let pwrite = ((dsf = (F,T,T)) V ((dsf = (T,F,F)) Vv
(dsf = (T,F,T)))) in
(cohn_ALU rep (fsf, msf, dsf, r, m, b)
= (shlb rep (r, b), (bitn rep r), pwrite))))

! (rep:"rep_ty) (fsf:bt4) (msf:bt2)
(dsf:bt3) (r:*wordn) (m:*wordn) (b:bool) .
(((¢st = (T,T,F,F)) A (mstf = (T,T))) ==
(let pwrite = ((dsf = (F,T,T)) V ((dst = (T,F,F)) V
(dsf = (T,F,T)))) in.
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
(cohn_VALUE aluout = (shlb rep (r,b)))))

! (rep:“rep_ty) (fsf:bt4) (msf:bt2)
(dsf:bt3) (r:*wordn) (m:#*wordn) (b:bool) .
(((fsf = (T,T,F,F)) A (msf = (T,T))) ==>
(let pwrite = ((dsf = (F,T,T)) Vv ({(dsf = (T,F,F)) Vv
(dsf = (T,F,T)))) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
(cohn_BVAL aluout = (bitn rep r))))

Fugure 8.4-4: Lemmas with properties of VIPER level

Next we step through the DSF cases by first considering DSF = (F, F, F). We must iden-
tify the values for (cohn_VALUE aluout), (cohn.BVAL aluout), and (cohn_SVAL aluout). The

theorems displayed in Iigure 8.4-1 characterize the values required in the proof.

By specializing the above theorems, and under the condition that the goal preconditions hold
and DSF = (F, F, F), we can now prove that the macro and VIPER levels are identical, for this

value of DSF.

The cases for DSF = (F, F, T) and (F, T, F) can be proven using the same tactic. For
DsF = (F, T, T), (T, F, F),or (T, F, T), the proofs are simpler since for each case an error

condition is generated, which causes execution to stop.

These error conditions are expressed with respect to the macro level by the following theorem:

63

F write_reg_illegalpdest_aux =
! (rep: rep_ty) (a:*wordn) (x:%wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ir:*wordn) (ram:*memory) (value:*wordn) (newb:bool).

(((DSF rep ir) = (F,T,T)) V
((DSF rep ir) = (T,F,F)) Vv
((DSF rep ir) = (T,F,T)))

1]
H
v

(write_reg rep (a, x, y, p, b, stop, ir, ram, value, newb)
= (a, x, y, p, b, T, ram))

and specializing it for SHLB:

F illegal_shlb = (SPECL [“rep: rep_ty";

"a:*wordn';
“x:*wordn"; 'y:*wordn";
"add (rep:-rep_ty) (p, wordn rep 1)";
"b:bool"; "F";
“fetch (rep: rep_ty) (ram, address rep p)";
“ram:*memory";
“shlb (rep: rep_ty)

((load_r rep

(a,x,y,add rep(p,wordn rep 1),

fetch rep(ram,address rep p))), b)";

“b:bool"]
write_reg_illegalpdest_aux);;

In the VIPER level the error couditions corresponding to DSF = (F, T, T), (T, F, F), and
(T, F, T) are expressed by the theorem in Figure 8.4-5. Hence the proofs of equivalence for the

cases resulting in errors consist of rewriting the goals using the tactic shown in Figure 8.4-6.

We now have proven the goal that the macro level correctly implements the shift-left behavior

at the VIPER iustruction level:

F ! (rep:-rep_ty) (a:*wordn) (x:#wordn) (y:*wordn)
(p:*wordn) (b:bool) (stop:bool) (ram: *memory) .

((~(CSF rep (fetch rep (ram, (address rep P)))) A

(-(DSF rep (fetch rep (ram, (address rep p)))=(T,T,F))) A
(“(DSF rep (fetch rep (ram, address rep p))=(T,T,T))) A
(FSF rep (fetch rep (ram, address rep p)) = (T,T,F,F)) A
(MSF rep (fetch rep (ram, address rep p)) = (T,T))) ==>

(SHLB rep (a, x, y, p, b, stop, ram) =
cohn_NEXT rep (a, x, ¥y, p, b, stop, ram)))

64

b ! (rep: "rep_ty) (a:*wordn) (x:*wordn) (y:*wordn)

(p:*wordn) (b:bool) (stop:bool) (ram:*memory)

(et fsf = (FSF rep (fetch rep (ram, address rep p))) in

let dsf = (DSF rep (fetch rep (ram, address rep p))) in

let msf = (MSF rep (fetch rep (ram, address rep p))) in

let rsf = (RSF rep (fetch rep (ram, address rep p))) in

let csf = (CSF rep (fetch rep (ram, address rep p))) in

let addr = (address rep (fetch rep (ram, address rep p))) in
let newp = (add rep (p, wordn rep 1)) in

let io = ((cohn_OUTPUT rep (dst, csf)) V

(cohn_INPUT rep (dsf, csf, fsf))) in
cohn_REG rep (rsf, a, x, y, newp) in
cohn_MEMREAD rep (ram, msf, addr, x,

y, io, cohn_NILM rep (dsf, csf, fsf)) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, wordn rep 1)) in
((("stop) A

("ecsf) A
(valid_address rep newp) A
(~(asf = (T,T,T))) A
(" (dst (T,T,F))) A
(dsf = (F,T,T)) A
(fsf = (T,T,F,F))) ==>
(cohn_NEXT rep (a, x, y, p, b, F, ram) =
(a, x, y, newp, b, T, ram))))

let r
let m

Fregure 8.4-5: Error cases in VIPER specification

e (ASM_CASES_TAC "((DSF (rep: rep_ty) (fetch rep (ram, address rep p)))
= (F,T,T)):bool");;

e (IMP_RES_TAC cohn_TTFF_FTT_aux_expanded
THEN IMP_RES_TAC illegal_shlb
THEN ASM_REWRITE_TAC [reg_eqv; write_reg; PAIR_EQ]);;

e (ASM_CASES_TAC "((DSF (rep: rep_ty) (fetch rep (ram, address rep p)))
= (T,F,F)):bool");;

e (IMP_RES_TAC cohn_TTFF_TFF_aux_expanded
THEN IMP_RES_TAC illegal_shlb
THEN ASM_REWRITE_TAC [reg_eqv; write_reg; PAIR_EQ]);;

e (IMP_RES_TAC dsf_remain);;

(IMP_RES_TAC cohn_TTFF_TFT_aux_expanded
THEN IMP_RES_TAC illegal_shlb
THEN ASM_REWRITE_TAC [reg_eqv; write_reg; PAIR_EQ]);;

[]

Frgure 8.4-0: Tactic used i proof of SIILB

65

8.5 DEFINITION OF THE DECODER

It was mentioned above that the mapping from the 12-bit opcode field of the VIPER level to
the 20 orthogonal instructions of the macro level is effected by a decoder. We have specified the
decoder in terms of 24 cases, corresponding to the 20 instructions in the macro level, 3 error cases,
and an extra case for the NOOP instruction. To complete the verification of the macro level it
is shown that the cases associated with the macro-level instructions are exactly the preconditions

for these instructions. Also, it is shown that the cases cover all the possible values for the VIPER

opcode field. The cases for the decoder are given in Appendix J.

66

9.0 CONCLUSIONS

This task was initiated because previous attempts to verify the design of the VIPER micropro-
cessor using mechanical theorem provers were not completed. Since Cohn’s incomplete verification
effort was published in its entirety, we had the opportunity to attempt to determine why it was so
difficult to complete. One reason is the large jump in abstraction between the instruction specifica-
tion and the implementation. The second reason is the complexity of the specification itself. Many
machines have clearly identified instructions with orthogonal fields to define addressing modes,
register selection, etc. This is not the case for the VIPER arclitecture. Thus, although the in-
struction architecture is not complex, 122 unique cases wust be separately considered in verifying
the implementation. Each of the cases considered in Cohn’s VIPER verification effort required

approximatcly one porsou-wovl\' to complete.

Based on the success Windley achieved using a hierarchical methodology to verify a simpler
microprocessor (AVM-1), we decided to apply the methodology to the VIPER processor. Windley’s
methodology depends on viewing the design of a microprocessor as a hierarchy of interpreters, the
topmost providing the abstractiou of the instructions accessible to the assembly language program-
mer and the lowest the implementation that is to be verilied. A reasonable choice for the lowest
level is an abstractiou of the microprocessor that consists of its blocks such as the ALU, registers
and latches; the original proof effort for the VIPER processor used this as the level to be verified
and referred to it as the elcctronic block nodel. Among the choices for intermediate levels using
the Windley methodology is an interpreter of microinstructions, which captures the decision that

the microprocessor is microcoded.

The VIPER design is not microcoded, because the designers concluded that a hardwired design
is faster than one where the control is achieved through microprograms. Moreover, the VIPER
design does not suggest any convenient levels other than the instruction level and the electronic
block model. Consequently, the Windley methodology could not be applied to the VIPER design.
What our verification offort is concerned with is a microcoded design that we developed to realize
the VIPER instruction set: the clectronic block model of our design is approximately equivalent in

complexity to that of RSRE’s design.

To address the issue of the complexity of the specification, we introduced a level below the
VIPER instruction level, which provides the same functionality but in terms of 20 orthogonal

instructions. Of course VIPER programs will not run on this 20-instruction level, so it remained to

67

show the equivalence of this new level with the VIPER instruction-set level. Qur design consisted

of 5 levels and entailed the verification of the four lowest of tliese.

Our verification demonstrates the following: Corresponding to a VIPER object program in-

struction occupying the 12-bit opcode field, the logic of the electronic-block model is such that the

correct ALU function will be invoked, the arguments (if any) will be drawn from the correct register

and main memory locations, the results (if any) will be stored in the correct register (and flag bit)

or main memory location, aud the program counter will be correctly updated (incremented by one

or set to the correct jump address). Since our design is microcoded, the proof entails (among many

other things) showing that the microprogram corresponding to each instruction is correct.

68

What the verification does not guarantee is important to disclose:

Our specification of the electronic block-model does not capture the semantics of the low-
level functions, such as add, shift-left. xor, etc. These functions are not defined. Hence, it is
not possible to use our specifications to reason about the computations of assembly language
programs. We could have casily provided a semantics for these [unctions as a specification to
be verified of an implementation more concrete than the clectronic-block model. We decided
not to provide such a specification, as our main goal was to verify the control logic of the
microprocessor. This was also a criticism of Cohn’s specification, but Cohn’s come closer

than ours in capturing the semantics of the operations.

Emphasizing what was indicated above, we have not verified an implementation more concrete
than the electronic-block model; such as a gate-level implementation. It is not clear that

verification is the most cost-clloctive approach to checking gate-level descriptions.

For simplicity we have assumed a single compare function. The VIPER processor has 16

compare instructions, but the logic to realize these differ in only trivial ways.

The VIPER processor has external control lines; such as a reset button. The RSRE specifi-

cation does not consider these les, nor do we.

Our specification (similar to RSRE’s) does not deal with how long an instruction takes to
execute. Handling timing specifications is feasible, but would severely complicate the verifi-
cation. Again, other techniques are better suited to reasoning about timing for the relatively

simple control logic that the VIPER processor employs.

We have assumed that the main memory responds essentially instantaneously to read or write

requests. VIPER can support an asynchronous interaction between the processing unit and

main memory. Techuiques are known for modeling such an interaction, but we did not use

them here.

e Main memory is assumed to be a black box. It is certainly feasible to consider a less abstract
model of memory, such as one that models the decoder, sense lines, etc. Again, verification

is not the best approach to reason about the details of a memory system.

Our major goal was to determine if the verification of such a hierarchical design is simpler
than the verification of a flat design, such as VIPER. Furthermore, we wanted to determine if any
gain is achieved through introduction of an orthogonal instruction set. The most difficult aspect
of the Cohn verification effort was the consideration of the 122 cases that are part of the RSRE
specification. Of course, our verification had to face these same 122 cases, but the objects being
verified with respect to these cases is much “closer” to the specification than was the case for
Cohn's proof. Having completed the verification we conclude that the methodology can simplify

microprocessor verification efforts.

A second goal was to determine if, through the use of the hierarchical methodology and a
previous successful verification eflort of a simpler microprocessor, the verification of a larger micro-
processor would be less of a tour de force than has been the experience with previous verification
efforts. Towards this goal, the main contributors of the project team were two Master-level stu-
dents, with skills in logic but no previous experience with formal methods or mechanical theorem
provers. Moreover, the proof effort was divided up - each studeut assuming responsibility for two
levels. Although each of the students completed his task, their work did not compose. Each student
made assumptions about the the micro level, but in a few instances without communicating them
to the other. In the end, these changes required most of the prool to be redone - and in the absence
of those who carried out the initial proof. I the communication between the human provers had

been better, much grief would have been avoided.

A third goal was to determine if, through the use of special-purpose HOL tactics, the proof
could have been accomplished with less human intervention. (HOL is mostly a proof checker,
as compared with the Boyer Moore theorem prover. Excessive human intervention is avoided
through the employment of tactics that match the expressions being reasoned about.) Towards
this goal, we developed a few svinbolic execution tactics intended to cover the actions associated
with the implementation of an instruction, e.g., a microinstruction, phase instruction, or macro level
instruction. At the lowest levels, special-purpose symbolic execution tactics worked perfectly, in

effect handling all cases. At the upper levels we were less successful, requiring hand-crafted tactics

69

corresponding to eacl instruction class {shift, write wemory, aritlimetic, ete). At the highest level
(proof of macro to RSRE specification), we were able 1o reuse very few tactics, a statement about

the irregularity of the VIPER instruction set.

A final goal was to determine the effectiveness of HOL for a large proof effort. The proof
was completed, but it was painful. The experience of HOL users has been that human proof time
vastly exceeds HOL’s processing time. This was not our experience with this proof. We generated

expressions that sometimes conswmed hours of processing time to reason about.

Additional issues to be studicd include:

o The scalability of the proof effort. Our team would not have been willing to tackle a micro-
processor an order of magnitude more complex than the VIPER architecture. The discovery

of tactics that handle most cases would, of course, simplify the human eflort.

e Reasoning about changes. Most of the I1OL processing time and a large fraction of the human
time was devoted to re-doing proofs subsequent to design changes. ldentifying those parts of

a proof that need not be redone would have saved vast effort.

e The role of a simulator to discover “obvious” errors. We designed the microprocessor, but
never tested it. Hence, the verification effort detected crrors that would have been discovered
with the must rudimentary of tests. Not having access to a CAD system with a design

simulator for HOL specifications, we should have written a simulator in ML.

o The role of correctiess-preserving transformations to transform a verified micro-coded design

into a more efficient hardwired design.

Further work is needed before it can be concluded that larger microprocessors can be verified
and that the hierarchical interpreter theory offers benefits in such efforts. Work underway at Boeing
on the verification of a fault-tolerant processor gives promise of another data point. Clearly, the
interpreter theory organizes the proof, but still the number of cases that the verifier must consider
is staggering. There are too many cases to be handled individually. Nand-crafted tactics can be
constructed to allow the HOL system to process many cases in one shot, but we discovered that
the performance of the theorem prover was dismal. The use of special Boolean decision packages

should be of considerable help.

70

—

10.

11.

12

13.

REFERENCES
- W. Cullyer, “lmiplementing Safety-Critical Systems: the Viper Microprocessor,” memo 411-87,
Royal Signals and Radar Establishment, 1987.

A. Cohn, “A Proof of Correctness of the VIPER Microprocessor: the First Level,” VLSI
Specification, Verification, and synthesis, G. Birtwhistle and P, S ubrahmanyam, eds., 1988.

B. Brock and W. Hunt, “Report on the Formal Specification and Partial Verification of the
VIPER Microprocessor,” Contractor Report 187540, NASA Langley Research Center, 1991.

. P. J. Windley, “The Formal Verification of Generic Interpreters,” Ph.D Thesis, 1990.

J. Joyce, “Formal Verification and Implementation of a Microprocessor,” in VLSI Specifica-
tion, Verification and Synthesis (G. Birtwistle and P. Subrahmanyam, eds.), Kluwer Academic

Publishers, 198K,

M. Gordon, “Proving a Computer Correct,” Tech. Rep. 41, Computer Lab, University of Cam-
bridge, 1983.
D. Weise, Formal Multi-level Hierarchical Verification of Synchronous MOS VLSI Circuits.

PhD thesis, Massachusetts Institute of Technology, 1986.

H. G. Barrow, “Verify: A Program for Proving Correctness of Digital Hardware Designs,”

Artificial Intelligence, vol. 24, 1984,

W. Hunt, “FM8501: A Verified Microprocessor,” Tech. Rep. ICSCA-CMP-47, University of

Texas at Austin, 1985.

S. Crocker, E. Cohen, S. Landauer, and H. Orman, “Reverification of a Microprocessor,” in

Proceedings of the Symposium on Security and Privacy, IEEE, 1988.

T. Arora, “The Formal Verification of the VIPER Processor: EBM to Microcode Level,” Mas-

ter’s thesis, University of California, Davis, 1990.

C. Pygott, “Formal Proof of Correspondence Between a Hardware Module and its Gate-level

Implementation,” memo %3012, Royal Signals and Radar Establishment, 1985.

A. Cohn, A Proof of Correctness of the Viper Microprocessor: the First Level,” in VLSI
Specification, Verification and Synthesis (G. Birtwistle and P. Subrahmanyam, eds.), Kluwer

Academic Publishers, 1988,

71

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

72

Y

A. Cohn, “Correctness Properties of the Viper Block Model: the Second Level,” in Current

Trends in Hardware Verification and Automated Theorcin Proving (G. BirtWistle and P. Sub-

rahmanyam, eds.), Springer-Verlag, 1989.

B. T. Graham, The SECD Microprocessor, A Verification Case Study. Kluwer International

Series in Engineering and Computer Science, Boston: Kluwer Academic Publishers, 1992.
P. Landin, “The Mechanical Evaluation of Expressions,” Conputer Journal, vol. 6, no. 4, 1964.

P. Henderson, Functional programming : application and implementation. Prentice-Hall Inter-

national, 1980.

A. Cohn, “A Proof of Correctness of the VIPER Microprocessor: the Second Level,” University

of Cambridge computer Laboratory Technical Report, 1989.

M. Gordon, “Proving a Computer Correct,” Tech. Rep. 41, Computer Lab, University of Cam-
bridge, 1983.

M. Gordon, “HOL: a proof generating system for higher-order logic,” in VLSI Specifica-

tion, Verification, and Synthesis, Kluwer Academic Press, 1983.
A. Church, “A Formulation of the Simple Theory of Types,” Symbolic Logic, vol. 5, no. 1, 1940.

M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: A Mechanized Logic of Computa-
tion. Springer-Verlag, 1979.

R. L. Constable et al., Implcmenting Mathematics with the Nuprl Proof Development System.

Prentice-Hall, 1956.

Appendix A: DESCRIPTION OF HOL

HOL is a general theorem-proving system developed at the University of Cambridge (ref. 19, 20) that
is based on Church’s theory of simple types, or higher-order logic (ref. 21). Church developed higher-
order logic as a foundation for mathematics, but it can be used for describing and reasoning about
computational systems of all kinds. Higher-order logic is similar to the more familiar predicate
logic, but allows quantification over predicates and functions, not Just variables, allowing more

general systems to be described.

HOL grew out of Robin Milner's LCF theorem prover (ref. 22) and is similar to other LCF
progeny such as NUPRL (ref. 23). Because HOL is the theorem-proving environment used in the

body of this work, we will describe it in miore detail.

HOL'’s proof style can be tailored to the individual user, but most users find it convenient to
work in a goal-directed fashion. HOL is a tactic-based theorem prover. A tactic breaks a goal into
one or more subgoals and provides a justification for the goal reduction in the form of an inference
rule. Tactics perforin tasks such as induction, rewriting, and case analysis. At the same time,
HOL allows forward inference and many proofs are a combination of both forward and backward
proof styles. Any theorem-proving strategy a user employs in connection with HOL is checked for

soundness, eliminating the possibility of incorrect proofs.

HOL provides the user with a metalanguage, ML, for prograiuming and extending the theorem
prover. Using ML, tactics can be put together to form more powerful tactics, new tactics can be
written, and theorems can be combined into new theories for later use. The metalanguage makes

the HOL verification system extremely flexible.

In HOL, all proofs, even tactic-based proofs, are eventually reduced to the application of
inference rules. Most nontrivial proofs require large numbers of inferences. Proofs of large devices
such as microprocessors can take many millions of inference steps. In a proof containing millions
of steps, what kind of confidence do we have that the pro.()f is correct? One of the most important
features of HOL is that it is sccure, meaning that new theorewms can only be created in a controlled
manner. HOL is based on five primitive axioms and eight primitive inference rules. All high-level
inference rules and tactics do their work through some combination of the primitive inference rules.
Because the entire proof can be reduced to one using only eight primitive inference rules and five

primitive axioms, an independent proof-checking program could check the proof syntactically.

73

Table A-1; HOL Infix Operaturs

Operator | Application | Meaning

=|tl=t2 t1 equals t2
, | t1,t2 the pair t1 and t2
t1 A t2 t1 and t2

tl v t2 tl1ort2

A
v
— | t1 = t2 | t1implies t2

The Language.

The object language of HOL 15 deseribed in this section. We will discuss HOL’s terms and

types.

Terms. All HOL expressions arc made up of terms. There are four kinds of terms in HOL:
variables, constants, function applications, and abstractions (lambda expressions). Variables and
constants are denoted by any scquence of letters, digits, underlines, and primes starting with a
letter. Constants are distinguished in the logic: any identifier that is not a distinguished constant
is taken to be a variable. Coustants and variables can have any finite arity, not just 0, and, thus,

can represent functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax. Thus, a term of

the form "t1 t2" is an application of the operator t1 to the operand t2. The term’s value is the

result of applying t1 to t2.

An abstraction denotes a function and has the form vA x. t". An abstraction "A x. t" has
two parts: the bound variable x and the body of the abstraction t. It represents a function, f,

such that "£(x) = t'. For example, "A y. 2+y" denotes a function on numbers which doubles its
argument.
Constants can belong to two special syntactic classes. Constants of arity 2 can be declared

to be infix. Infix operators are written "randl op rand2" instead of in the usual prefix form:

nop randl rand2". Table A-1 shows several of HOL’s built-in infix operators.

Constants can also belong to another special class called binders. A familiar example of a
binder is V. If ¢ is a binder, then the term "c x.t" (where x is a variable) is written as shorthand

for the term "c(A x. t)". Table A-2 chows several of HOL’s built-in binders.

74

Table A-2. HOL Binders

Binder | Application | Meaning
ViVt for all x, t
33 x.t there exists an x such that t
clex. t choose an x such that t is true

In addition to the infix constants and binders, HOL has a conditional statement that is written

a — b | ¢, meaning “if a, then b. else ¢.”

Types. HOL is strougly typed to avoid Russell's paradox and others like it. Russell’s paradox
occurs in a high order logic when one can define a predicate that leads to a contradiction. Specif-
ically, suppose that we define P as P(x) = -x(x) where - denotes negation. P is true when its
argument applied to itself is false. Applying P to itself leads to a contradiction since P(P) = -P(P)
(i.e., true = false). This kind of paradox-can be prevented by typing since, in a typed system,

the type of P would never allow it to be applied 1o itself.

Every term in HOL is typed according to the following recursive rules:

a. Each constant or variable has a fixed type.
b. If x has type « and t has type 4, the abstraction A x. t has the type (a — J).

c. If £ has the type (& —) and u has the type o, the application t u has the type 3.

Types in HIOL are built from type variables and type operators. Type variables are denoted by
a sequence of asterisks (*) followed by a (possibly empty) sequence of letters and digits. Thus, *,
**%, and *ab2 are all valid type variables. All type variables are universally quantified implicitly,

yielding type polymorphic expressions.

Type operators construct new types from existing types. Each type operator has a name
(denoted by a sequence of letters and digits beginning with a letter) and an arity. f 0q,..., 0, are
types and op is a type operator of arity u, the (o, .. .y0n)op is a type. Note that type operators
are postfix while normal function application is prefix or infix. A type operator of arity 0 is a type

constant.

HOL has several built-in types which are listed in table A-3. The type operators bool,
ind, and fun are primitive. HOL has a special syntax that allows (*,*x)prod to be written

as (* # »*), (x,xx)sum to be written as (x + *%), and (*,*x)fun to be written as (* => %%),

75

Table A-3: HOL Type Operalors

Operator Arity | Meaning
bool | 0 booleans
ind | 0 individuals
num | 0 natural nuibers
(*)list | 1 lists of type *
(*,*x)prod | 2 products of * and **
(*,*%x)sum | 2 coproducts of * and *x
(*,**)fun | 2 functions from * to **

The Proof System.

HOL is not an automated theorem prover but is more than simply a proof checker, falling

somewhere between these two extremes. HOL has several features that contribute to its use as a

verification environment:

76

Several built-in theories, including booleans, individuals, numnbers, products, sums, lists, and
trees. These theorics contain the five axioms that form the basis of higher order logic as well

as a large number of theorems that follow from them.

Rules of inference for higher order logic. These rules contain not only the eight basic rules
of inference from higher order logic, but also a large body of derived inference rules that
allow proofs to proceed using larger steps. The HOL system has rules that implement the
standard introduction and elimination rules for Predicate Clalculus as well as specialized rules

for rewriting terms.

. A collection of tactics. Lxamples of tactics include: REWRITE_TAC which rewrites a goal ac-

cording to some previously proven theorem or definition; GEN_TAC which removes unnecessary
universally quantified variables from the front of terms; and EQ.TAC which says that to show

two things are equivalent, we should show that they imply cach other.

A proof managenient system that keeps track of the state of an interactive proof session.

. A metalanguage, ML, for progranmming and extending the theorem prover. Using the metalan-

guage, tactics can be put together to forun more powerful tactics, new tactics can be written,
and theorems can be aggregated to form new theories for later use. The metalanguage makes

the verification system extremely flexible.

Appendix B: INTERPRETER THEORY AND ABSTRACT FUNCTIONS

File: def_aux.ml

Description: Defines generic functions used in subsequent Viper

specifications.

set_search_path (search_path() € lib_dir_list);;
loadf ‘abstract‘;; new_theory ‘aux_def‘;;
new_parent ‘tuple’;;
nevw_type_abbrev(‘time',":num");;

let abs_rep = new_abstract_representation [
% ALU functions %
% negation %

(‘neg‘, ":(#wordn -> *wordn) ")

% addition without carry ¥

(‘add‘, ":(#wordn # *wordn -> *wordn) ")

% predicate carry for addc Y

(‘addp', ":(*wordn # swordn # svwordn) -> bool ")

% overflow predicate for add ¥

(‘aovfl‘, ":(swordn # svordn # #*wordn) -> bool ")

% subtract %

(‘sub‘, ":(swordn # =wordn) -> swordn ")

% carry predicate for sub %

(‘subp‘, ":(*vwordn # *wordn & =*wordn) -> bool ")

% overflow predicate for sub %

(‘sovil‘, ":(svordn # *wordn # *wordn) -> bool ")

% bitwise xor ¥

(‘bxor', ":(»vordn # *vordn -> swordn) ")

% bitwise and %

(‘band‘, ":(swordn # *wordn -> =*wordn) ")

% bitwise nor %

(‘bnor®, ":(+#vordn # *vordn -> *wordn) ")

Y bitwise not %

(‘bnot', ":(#wordn -> «wordn) ")

% bitwise or %
(‘bor*, ":{(bcol # bool -> bool) ")

==

, SHIFTER functions %
% shift right , copy sign bit %

(‘shr¢, ":{(*wordn -> »vordn) ")

% shift left %

(*shl®, ":(swordn -> *wordn) ")

% shift right thru b 7%
(‘shrb‘,”: (*wordn # bool -> suordn) ")

% shift left thru b %
(‘shlb‘,":(#wordn # bool -> swordn) ")

% Coercion functions %
% numeric vaule of n-bit word %

(‘val', ":(*wordn -> num) ")

% wordn representation of number %

(‘wordn‘, ":{(num -> #*vwordn) ")

% address part of a word %

(‘address‘, ":(»wordn -> *address) ")

Y% address converting to a word %
4

(‘pad‘, ":(*address -> s#yordn) ")

% combine msb opcode bits and lsb address bits to wordn %

(‘join‘, ":((sopcode # saddress) -> =wordn) ")
% Test functions %
% see if address is valid %

(‘valid_address‘, ":(swordn -> bool) ")

% decoder %

(*decode’, ":({*opcode # bool) -> (bool # btS # bool)) ™)

% Compare function %

78

A

%

% fetch a word from io ¥% % memory mapped io %

% cmp two words depending on code ¥%

(‘bemp’, ":(svordn # *wordn # bool # bt4 -> bool)

Subranging functions %

% opcode portion of word %

(‘opcode*, ":(»wordn -> sopcode)

% retrieve bit0 of a swordn %

(‘bit0‘, ":(#wordn -> bool) ")

% retrieve bitn of a *wordn

(‘bitn‘, ":(wwordn -> bool) ")

% retrieve rsf of a *wordn Y%
(‘RSF', ":(»vwordn -> bt2) ")

% retrieve msf of a *wordn ¥
(‘MSF‘, ":(=wordn -> bt2))

% retrieve dsf of a swordn ¥

(‘DSF‘, ":(swordn -> bt3) ")

% retrieve csf of a *wordn Y
(“CSF‘, *“:(=wordn =-> bool) ")

% retrieve fsf of a *wordn Y
('FSF*, ":(%wordn -> bt4) ™)

Memory functions ¥

% fetch a word from memory J

(‘fetch‘, ":((*memory # xaddress) -> swordn)

% store a word in memory %

('store’, ":((*memory ¥ *address # swvordn) -> smemory)

(‘fetchio*, ":((*memory # =address) -> swordn)

»

% store a word in memory % ’ memory mapped io Y%

(‘storeio’, ":((smemory # xaddress # swordn) -> *memory)

1

close_theory();;

n)

")

n)

||)

79

set

File: mk_I.ml

Author: (¢c) P. J. Windley 1990
Date: 09 JAN 90

Modified: 14 FEB 90

Description:

Defines a generic interpreter used in subsequent specifications.
The interpreter is proven to be correct under certain obligations.

The interpreter in this file is synchronous.

.search_path (search_path() ¢ lib_dir_list);;

system ‘/bin/rm gen_I.th';;

new_theory ‘gen_I‘;;

map loadf [‘abstract‘];;

new_type_abbrev(‘time‘,":num");;

new_type_abbrev(‘time’‘,":num"};;

let

80

cpu_abs = neu_abstracL_representation

(
(‘inst_list',":(*key#(#state->#env->xstate))list™)
(‘key‘,":*key->num")
H
(‘select‘,":*state->*env->*key')
(‘cycles‘,":»key->num")
H
(‘substate',':*state’->xstate")

(‘subenv‘,":%env’~>wenv'")
(‘Impl‘,":(time‘->*state’)->(time’->#env’)->bool“)
(‘count‘,":*state’->®env’->*key’")

(‘start',":skey’")

I
make_inst_thms cpu_abs;;
let I_rep_ty = abstract_type ‘gen_I' ‘key';;

let INTERP_def = new_definition
(‘INTERP*,
"t (rep:"I_rep_ty) (s:time->sstate) (e:time->*env) .
INTERP rep s e =
!t:time.
let n = (xey rep (select rep (s t) (e t))) in (
s(t+1) = (SND (EL n (inst_list rep))) (s t) (e t))"

)i
let INTERP_DEF_EXPANDED = EXPAND_LET_RULE INTERP_def: ;

%<
let FIND = new_recursive_definition
false
list_Axiom
‘FIND®
"(FIND x (] = 0) /\
(FIND x (CONS h t) =
{(x =h) =>0 1 1+ (FIND x t))";:

letrec pos x 1 =
null 1 => 0 |
(x = (hd 1)) => 1 | (1 + (pos x (t1 1)));;

>%

let impl_imp_def = new_definition
(‘IMPL_IMP*,
“! inst:(*key#(*state->*env->*state))
(s’:time’->%state’)
(e’:time’~>%env’)
IMPL_IMP rep s’ e’ inst =
(Impl (rep: I_rep_ty) s’ e’) ==>
('t:time’.
let s = (\t. (substate rep (s’ t))) in
let e = (\t. (subenv rep (e’ t))) in
let ¢ = (cycles rep (select rep (s t) (e t))) in (
(select rep (s t) (e t) = (FST inst)) /\
(count rep (s’ t) (e’ t) = (start rep)) ==>
((SND inst) (s t) (e t) = (s (t + c))) /\
(count rep (s’ (t + ¢)) (e’ (t + ¢)) = (start rep))))*

81

Y
let IMPL_IMP_EXPANDED = EXPAND_LET_RULE impl_imp_def;;

nev_theory_obligations
L
“EVERY (IMPL_IMP (rep: " I_rep_ty) (s’:time’->*state’) (e’:time’->%env’))
(inst_list rep)"
mix:skey. (key (rep: I_rep_ty) k) < (LENGTH (inst_list rep))"
"ik:#key . k = (FST (EL (key (rep: I_rep_ty) k) (inst_list rep)))"

1

let IMPL_NEXTSTATE_LEMMA = TAC_PROCF
i,
"let s = (\t:time .(substate rep (s’ t))) and
e = (\t:time .{(subenv rep (e’ t))) in (.
(Impl (rep:"I_rep_ty)) s’ e’ ==>
(‘t:time’.
(count rep (s’ t) (e’ t) = (start rep)) ==
((substate rep (s' (t+(cycles rep (select rep (s t) (e t)))))) =
(SND (EL (key rep (select rep (s t) (e t)))
(inst_list rep))) (s t) (e t}IN™),
EXPAND_LET_TAC
THEN REPEAT STRIP_TAC
THEN POP_ASSUM_LIST (\asl

let asl’ =
map (PURE_REWRITE_RULE (EVERY_EL;1MPL_IMP_EXPANDED]) asl in

MAP_EVERY ASSUME_TAC
(map
(\thm.
(SPEC "(key (rep:~I_rep_ty)
(select rep
(substate rep(s’ t))
(subenv rep (e’ t)}))" thm) 7
(SPEC "(select (rep: I_rep_ty)
(substate rep(s’ t))
(subenv rep (e’ t)))" thm) 7
thm) asl'))
THEN RES_TAC
THEN POP_ASSUM (\thm. ASSUME_TAC (REWRITE_RULE [] (SPEC "t:time’" thm)))
THEN RES_TAC
THEN FIRST_ASSUM (ACCEPT_TAC o SYM_RULE)

82

)i
let IMPL_NEXTSTATE_LEMMA_EXPANDED = EXPAND_LET_RULE IMPL_NEXTSTATE_LEMMA;:

let time_shift = new_prim_rec_definition
(‘time_shift‘,
"(time_shift f (s:time->sstate) (e:time->xenv) 0 = 0) /\
(time_shift f s e (SUC n) = (
let t = (time_shift f s e n) in
t+ (f (s1t) (e t))))"
)i

let I_CLOCK_LEMMA = TAC_PROOF
o,
"let s

(\t:time .(substate rep (s’ t))) and

e = (\t:time. (subenv rep (e’ t))) in (
(Impl rep) s’ e’ /\
((count rep) (s’ 0) (e' 0) = (start rep)) ==>
't. let t_impl =
(time_shift (\st env. (cycles rep (select rep st env})) s e t) in
(count (rep:-I_rep_ty)) (s’ t_impl) (e’ t_impl) = (start rep))"),
EXPAND_LET_TAC
THEN REPEAT GEN_TAC
THEN STRIP_TAC
THEN INDUCT_TAC
THEN REWRITE_TAC [time_shift; o_DEF;LET_DEF)
THEN (FIRST_ASSUM ACCEPT_TAC ORELSE ALL_TAC)
THEN POP_ASSUM (\thm. ASSUME_TAC
(CONV_RULE (TOP_DEPTH_CONV BETA_CONV)
(ONCE_REWRITE_RULE [o_DEF] thm)))
THEN BETA_TAC
THEN POP_ASSUM_LIST (\asl
let asl’ =
map (PURE_REWRITE_RULE {EVERY_EL;IMPL_IMP_EXPANDED]) asl in
MAP_EVERY ASSUME_TAC
(map
(\thm.
(SPEC "(key (rep: I_rep_ty)
(select rep
(substate rep
(s
(time_shift
(\st env. cycles rep(select rep st env))
(\t'. substate rep(s’ t’))
(\t’. subenv rep (e’ t’)) t)))

(subenv rep

(e’
(time_shift
(\st env. cycles rep(select rep st env))
(\t'. substate rep(s’ t’))
(\t’. subenv rep (e’ t’)) t)))))" thm) ?
(SPEC "(select (rep:~I_rep_ty)
(substate rep
(s’
(time_shift
(\st env. cycles rep(select rep st env))
(\t’. substate rep(s’ t'))
(\t’. subenv rep (e’ t’)) t)))
(subenv rep
(e’
(time_shift
(\st env. cycles rep(select rep st env))
(\t’. substate rep(s’ t’))
(\t’. subenv rep (e’ t’)) t))))" thm) ?
thm) asl’))
THEN RES_TAC
THEN POP_ASSUM (\thm. ASSUME_TAC (REWRITE_RULE []
(SPEC "(time_shift
(\st env. cycles (rep:"I_rep_ty) (select rep st env))
(\t’. substate rep(s’ t'))
(\t’. subenv rep (e’ t')) t):time’" thm)))
THEN RES_TAC
)i

let I_CLOCK_LEMMA_EXPANDED = EXPAND_LET_RULE I_CLOCK_LEMMA;;

let IMPL_I_CORRECT = prove_thm
(‘IMPL_I_CORRECT®,
"let 3 = (\t:time .(substate rep (s’ t))) and
e = (\t:time . (subenv rep (e’ t))) in (
(Impl rep) s’ e’ /\
((count (rep:~I_rep_ty)) (s' 0) (e’ 0) = (start rep)) ==>
let f = time_shift (\st env. (cycles rep (select rep st env))) s e in
(INTERP rep) (s o f) (e o £))",
EXPAND_LET_TAC
THEN REPEAT GEN_TAC
THEN PURE_REWRITE_TAC [INTERP_DEF_EXPANDED;o_DEF)
THEN STRIP_TAC
THEN IMP_RES_TAC (PURE_ONCE_REWRITE_RULE [o_DEF] I_CLOCK_LEMMA_EXPANDED)
THEN GEN_TAC
THEN BETA_TAC

84

THEN PURE_ONCE_REWRITE_TAC
[EXPAND_LET_RULE (REWRITE_RULE [ADD1] time_shift)]
THEN BETA_TAC
THEN POP_ASSUM (\x. ASSUME_TAC (SPEC "t:time’" xJ)
THEN IMP_RES_TAC IMPL_NEXTSTATE_LEMMA_EXPANDED

)i

close_theory();;

85

File: mk_aux.ml

Description: Prove auxilliary theorems used in subsequent proofs.

___ Y
syster ‘/bin/rm aux_thms.th';;

nev_theory ‘aux_thms';;

Y= = o e e
Auxilliary list definitions and theoreums
__ Y

let SET_EL_DEF = new_prim_rec_definition
(‘'SET_EL_DEF*,
"(SET_EL 0 (1st:(#)list) x = (CONS x (TL 1lst))) /\
(SET_EL (SUC n) 1st x = (CONS (HD 1st) (SET_EL n (TL 1st) x)))"
VHH

let SET_EL = prove_thm
(‘SET_EL',
"' htx.
(SET_EL 0 (CONS h t) x = (CONS x t)) /\
(SET_EL (SUC n) (CONS h t) x = (CONS h (SET_EL n t x)))",
REPEAT GEN_TAC
THEN REWRITE_TAC [SET_EL_DEF;HD;TL}
Yis

let EL_SET_EL = prove_thm
(‘EL_SET_EL*,
"' x n lst . EL n (SET_EL n 1st x) = x",
GEN_TAC
THEN INDUCT_TAC
THEN REWRITE_TAC [SET_EL_DEF; EL;:CONS;TL;HD]
THEN LIST_INDUCT_TAC
THENL [
POP_ASSUM (\x. ASSUME_TAC (SPEC “TL[J:(*)list" x))

ALL_TAC
]
THEN ASM_REWRITE_TAC (TL]
)i

close_theory();;

86

File: threeval.ml

Description: Defines a new type ’triple’ with members ONE, TWD,
THREE. used to instantiate *key in the EBM to Phase

level proof of viper.

system ‘/bin/rm -f threeval.th‘;;

nev_theory ‘threeval‘;;

let triple = define_type ‘triple’' ‘triple = ONE | TWO | THREE‘;;
let y = prove_constructors_distinct triple;;

let triple_induct = prove_induction_thm traple;;

let triple_cases = prove_cases_thm triple_induct;;

let triple_value = new_definition(

‘triple_value‘,

"!x:triple. triple_value x = (x=0NE) => 0 |
(x=TWD) => 1 |
Qn

)i

let triple_VALUE_LEMMA = prove_thm
(‘triple_VALUE_LEMMA®,
"(triple_value ONE = 0) /\ (triple_value TWO = 1)
/\ (triple_value THREE = 2)",
REWRITE_TAC[triple_value] THEN
STRIP_ASSUME_TAC y THEN
ASSUM_LIST(\asl. REWRITE_TAC[NOT_EQ_SYM (el 1 asl); NOT_EQ_SYM (el 2 asl);
NOT_EQ_SYM (el 3 as1)])
)i

let triple_LENGTH_LEMMA = prove_thm
(‘triple LENGTH_LEMMA‘,
"! x:triple (11 12 13:#). triple_value x < (LENGTH {11; 12; 13])",
REPEAT GEN_TAC THEN REWRITE_TAC [LENGTH] THEN
REWRITE_TAC{triple_value] THEN
COND_CASES_TAC THENL [
REWRITE_TAC[LESS_0]
COND_CASES_TAC THENL [
CONV_TAC(TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC[LESS_MONO_EQ;LESS_0]

87

CONV_TAC (TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC([LESS_MONO_EQ;LESS_0]

]
)i

close_theory(});;

88

Appendix C: VIPER LEVEL SPECIFICATION

%

Prove that the macro level ==> cohn level
%

system ‘/bin/rm cohn_eqvaux.th';;
set_search_path (search_path() @ lib_dir_list);;
loadf ‘abstract‘;;

new_theory ‘cohn_eqvaux‘;;

new_parent ‘aux_def‘;;
new_parent ‘cohn_viper‘;;

new_parent ‘macro_def‘;;
let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let cohn_REG = definition 'cohn_viper‘ ‘cohn_REG';;
let cohn_INVALID = definition ‘cohn_viper‘ ‘cohn_INVALID®;;

let write_reg = EXPAND_LET_RULE (definition ‘macro_def‘ ‘urite_reg‘);;
let load_r = EXPAND_LET_RULE (definition ‘macro_def‘’ ‘load_r‘);:

let cohn_NEXT = definition 'cohn_viper‘ ‘cohn_NEXT*;;
let cohn_NEXT_expanded = EXPAND_LET_RULE cohn_NEXT;;

% register loads are eqv %

let reg_eqv = prove_thm

(‘reg_eqv’,

"! (rep:Trep_ty) (a:*wordn) (x:*wordn) (y:swordn) (p:*wordn)
(b:bool) (ram:*memory)

(cohn_REG rep (RSF rep(fetch rep(ram,address rep p)),a,x,y,
add rep(p,wordn rep 1))) =
(load_r rep (a, x, y, add rep (p, wordn rep 1),

fetch rep (ram, address rep p)))",

REPEAT GEN_TAC

THEN PURE_REWRITE_TAC [cohn_REG; load_r]

THEN REPEAT (COND_CASES_TAC THEN ASM_REWRITE_TAC[PAIR_EQ]));:

% cohn_stop %

let cohn_stop = prove_thm (

‘cohn_stop*,

“! (rep: rep_ty) (a:*wordn) (x:*wordn) (y:*wordn) (p:#*wordn)

(b:bool) (stop:bool) (ram:*memory)

a-2

stop ==>

(cohn_NEXT rep (a, x, y, p, b, stop, ram)

= (a, x, ¥, p, b, T, ram))",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN ASH_REURITE_TAC[cohn_NEXT_expanded]):;

% cohn_noinc %
let cohn_noinc = prove_thnm

(‘cohn_noinc*,

"t (rep:-rep_ty) (a:swordn) (x:*wordn) (y:*wordn)

(p:#wordn) (b:bool) (stop:bool) (ram:*memory)

(let newp = (add rep (p, (wordn rep 1))) in
((("valid_address rep newp) /\

("stop)) ==>

(cohn_NEXT rep (a, x, y, p, b, stop, ram)

= (a, x, y, nevp, b, T, ram))))",

REPEAT GEN_TAC

THEN EXPAND_LET_TAC
THEN STRIP_TAC

THEN ASM_REWRITE_TAC [cohn_NEXT_expanded; cohn_INVALIDI):;

% write_reg_illegalpdest_aux %
let vrite_reg_illegalpdest_aux = prove_thm

('vrite_reg_illegalpdest_aux‘,

"t (rep: rep_ty) (a:*wordn) (x:svordn) (y:*wordn) (p:*wordn) (b:bool)

(stop:bool) (ir:swordn) (ram:*memory)

(value:*wordn) (newb:bool).

(((DSF rep ir) = (F,T,T)) \/
((DSF rep ir) = (T,F,F)) \/
((DSF rep ir) = (T,F,T)))

==

(write_reg rep (a, x, y, p, b, stop, ir,

= (a, x, y, p, b, T, ram))",
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[write_reg; PAIR_EQ)):;

ram, value, newb)

let THREE_TUPLE_VALUE_LEMMA = theorem ‘tuple’ *THREE_TUPLE_VALUE_LEMMA®;;

let three_tuple_value_lemma = (SPECL ["b:bt3"] THREE_TUPLE_VALUE_LEMMA) ;;

let bt3_remaining_lemma = prove_thm
(‘bt3_remaining_lemma‘,

"1 (b:bt3) .

90

(" = (F,F,F))) /\

(b = (F,F,T))) /\
(= (F,T,F))) /\
= (F,T,T))) /\
(= (T,F,F))) /\
(= (T,T,F))) /\
= (T,T,T))

==> (b = (T,F,TH)",
REPEAT GEN_TAC
THEN STRIP_TAC
THEN ASSUM_LIST (\asl. ASSUME_TAC (REWRITE_RULE {(el 1 asl):
(el 2 asl); (el 3 asl);

(el 4 asl); (el S asl);

(el 6 asl); (el 7 asl)]

three_tuple_value_lemma))

THEN ASM_REWRITE_TAC[]);;

let TWO_TUPLE_VALUE_LEMMA = theoremn ‘tuple' ‘TWO_TUPLE_VALUE_LEMMA';:
let two_tuple_value_lemma = (SPECL ["b:bt2"] TWO_TUPLE_VALUE_LEMMA);:

let bt2_remaining_lemma = prove_thm

(‘bt2_remaining_lemma‘,

"' (b:bt2) .

(("(b = (F,F))) /\

(= (F,T)H) /\

= (T,F)

==> (b = (T,T))",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN ASSUM_LIST (\asl. ASSUME_TAC (REWRITE_RULE [(el 1 asl);

(el 2 asl); (el 3 asl)]
tvo_tuple_value_lemma))

THEN ASM_REWRITE_TAC(]);;

%
Author: Tony Leung

University of California, Davis

Prove that the macro level ==> cohn level
%
system ‘/bin/rm cohn_TTFF_aux.th';;

set_search_path (search_path() @ lib_dir_list);;

loadf ‘abstract’;;

nev_theory ‘cohn_TTFF_aux‘;;

new_parent ‘aux_def‘;;

nev_parent ‘cohn_viper‘;;

nev_parent ‘macro_def';;

let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let cohn_ALU
let cohn_SVAL
let cohn_BVAL

EXPAND_LET_RULE (definition ‘cohn_viper' ‘cohn_ALU');;
definition ‘cohn_viper‘ ‘cohn_SVAL';;

definition ‘cohn_viper' ‘cohn_BVAL‘;;

let cohn_VALUE = definition ‘cohn_viper‘ ‘cohn VALUE®;;
let cohn_INVALID = definition ‘cohn_viper' ‘cohn_INVALID';;
let cohn_ILLEGALCALL = definition ‘cohn_viper® ‘cohn_ILLEGALCALL':;

let cohn_SPAREFUNC = definition ‘cohn_viper® ‘cohn_SPAREFUNC®;;
let cohn_ILLEGALPDEST = definition ‘cohn_viper* ‘cohn_ILLEGALPDEST';;

let cohn_WRITE = definition ‘cohn_viper' ‘cohn_WRITE';;
let cohn_ILLEGALWRITE = definition ‘cohn_viper* ‘cohn_ILLEGALWRITE®;;

let cohn_NILM = definition ‘cohn_viper* ‘cohn_NILM';;

let cohn_NDOP = definition ‘cohn_viper' ‘cohn_NOQP*;;

let cohn_REG = definition ‘cohn_viper" ‘cohn_REG*;;

let write_reg = EXPAND_LET_RULE (definition ‘macro_def‘ ‘write_reg‘);;

let load_r = EXPAND_LET_RULE (definition ‘macro_def‘ ‘load_r‘);;

let cohn_NEXT

definition ‘cohn_viper‘ ‘cohn_NEXT';;

let cohn_NEXT_expanded = EXPAND_LET_RULE cohn_NEXT;;

let write_reg = EXPAND_LET_RULE (definition ‘macro_def’ ‘write_reg‘);;

%, cohn_WRITE_TTFF %
let cohn_WRITE_TTFF = prove_thm

(‘cohn_WRITE_TTFF*,
"} (rep: rep_ty) (a:*vordn) (x:*wordn) (y:»wordn) (p:*wordn)

(b:bool) (ram:*memory) .

(" (((DSF rep (fetch rep (ram, address rep p))) = (T,T,TH \/

((DSF rep (fetch rep (ram, address rep p»)) = (T,T,F)))) ==>

(cohn_WRITE rep (DSF rep (fetch rep (ram, address rep P,

(CSF rep (fetch rep (ram, address rep p)n

REPEAT GEN_TAC
THEN STRIP_TAC

=P",

THEN ASM_REWRITE_TAC [cohn _WRITE; PAIR_EQI)

92

% cohn_illegalcall _TTFF %
let cohn_illegalcall _TTFF = prove_thm
(‘cohn_illegalcall TTFF‘,
" 1 (rep:-rep_ty) (a:*wordn) (x:*wordn) (y:svordn) (p:*wordn) (b:bool)
(stop:bool) (ram:sememory) .
(((FSF rep (fetch rep (ram, address rep p))) = (T,T,F,F))
ax> ((cohn_ILLEGALCALL rep
((DSF rep (fetch rep (ram, address rep p))),
(CSF rep (fetch rep (ram, address rep p))),
(FSF rep (fetch rep (ram, address rep p))))) = F))",

REPEAT GEN_TAC
THEN STRIP_TAC
THEN ASM_REWRITE_TAC([cohn_ILLEGALCALL; PAIR_EQ]);;

let cohn_NILM_TTFF = prove_thm

(‘cohn_NILM_TTFF®,

“t (rep:-rep_ty) (a:swordn) (x:swordn) (y:*wordn) (p:*wordn)
(b:bool) (ram:smemory) .

(("(CSF rep (fetch rep (ram, address rep p)))) /\

(" (DSF rep(fetch rep(ram,address rep p)) = 1,T,7T)) /\

(" (DSF rep(fetch rep(ram,address rep p)) = T,T,F)) /\

(FSF rep (fetch rep (ram, address rep p)) = (T,T,F,F)))

==> (cohn_NILM rep ((DSF rep (fetch rep (ram, address rep p))),
(CSF rep

(fetch rep (ram, address rep p))),

(FSF rep (fetch rep (ram,

address rep p))))

= T)",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN ASM_REWRITE_TAC[cohn_NILM; PAIR_EQ1)::

let cohn_sparefunc_TTFF = prove_thm

(‘cohn_sparefunc_TTFF‘,

"1 (rep:-rep_ty) (a:swordn) (x:*wordn) (y:swordn) (p:#vordn) (b:bool).
((((FSF rep (fetch rep (ram, address rep p))) = (T,T,F,F)) ==
(cohn_SPAREFUNC rep (

(DSF rep (fetch rep (ram, address rep p))),

(CSF rep (fetch rep (ram, address rep p))),

(FSF rep (fetch rep (ram, address rep p))))

=F))",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN ASM_REWRITE_TAC[cohn_SPAREFUNC; PAIR_EQ});;

93

% cohn_ILLEGALWRITE_TTFF %
let cohn_ILLEGALWRITE_TTFF = prove_thm

(‘cohn_ILLEGALWRITE_TTFF*,

"1 (rep:~rep_ty) (a:swordn) (x:*wordn) (y:*wordn) (p:*wvordn)
(b:bool) (ram:*memory)

(" ({(DSF rep (fetch rep (ram, address rep p))) = (T,T,T)) \/
((DSF rep (fetch rep (ram, address rep p))) = (T,T,F)))) ==>
(cohn_ILLEGALWRITE rep (DSF rep

(fetch rep (ram, address rep p)),

(CSF rep (fetch rep (ram, address rep p))),

(MSF rep (fetch rep (ram, address rep p))))

= F)",

REPEAT GEN_TAC THEN STRIP_TAC THEN

IMP_RES_TAC cohn_WRITE_TTFF

THEN ASM_REWRITE_TAC[PAIR_EQ; cohn_ILLEGALWRITE]);;

% cohn_illegalpdest_TTFF_ill %

let cohn_illegalpdest _TTFF_ill = prove_thm
(‘cohn_illegalpdest TTFF_111°,

"1 (rep: rep_ty) (a:*vordn) (x:*wordn) (y:*wornd) (p:*wordn)

(b:bool) (ram:s*memory) .

(("CSF rep (fetch rep (ram, address rep p))) /\

(FSF rep (fetch rep (ram, address rep p)) = (T,T,F,F)) /\
((DSF rep (fetch rep (ram, address rep p)) = (F,T,T)) \/
(T,F,F)) \/
(T,F,T))))

(DSF rep (fetch rep (ram, address rep p))

(DSF rep (fetch rep (ram, address rep p))
==> ((cohn_ILLEGALPDEST rep (DSF rep
(fetch rep (ram, address rep p)),

CSF rep (fetch rep (ram, address rep p)),
FSF rep (fetch rep (ram, address rep p))))
=T)",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN ASM_REWRITE_TAC{PAIR_EQ; cohn_ILLEGALPDEST]);;

% cohn_illegalpdest _TTFF_pass %

let cohn_illegalpdest _TTFF_pass = prove_thm
(‘cohn_illegalpdest _TTFF_pass',

"1 (rep:"rep_ty) (a:*wordn) (x:*vwordn) (y:»wornd) (p:*wordn)

(b:bool) (ram:smemory)

94

(("CSF rep (fetch rep (ram, address rep p))) /\

(FSF rep (fetch rep (ram, address rep pj) = (T,T,F,F)) /\

((DSF rep (fetch rep (ram, address rep p)) = (F,F,F))

(DSF rep (fetch rep (ram, address rep p))
(DSF rep (fetch rep (ram, address rep pJ))

==> ((cohn_ILLEGALPDEST rep (DSF rep (fetch rep

(ram, address rep p)),

CSF rep (fetch rep (ram, address rep p)),

FSF rep (fetch rep (ram, address rep p))))

=P,
REPEAT GEN_TAC
THEN STRIP_TAC

THEN ASM_REWRITE_TAC[PAIR_EQ; colu_ILLEGALPDEST])::

let cohn_TTFF_FFF_aux = prove_thnm
(‘cohn_TTFF_FFF_aux*,

"! (rep: rep_ty) (a:*wordn) (x:swordn) (y:ewordn)

(p:#vordn) (b:bool) (stop:bool) (ram:*memory)

(let fsf = (FSF rep (fetch rep (ram,
let dsf

(DSF rep (fetch rep (ranm,
let maf = (MSF rep (fetch rep (ram,

let rsf = (RSF rep (fetch rep (ram,

let csf (CSF rep (fetch rep (ram,

address rep p)))
address‘rep p)))
address rep p)))
address rep p)))
address rep p)))

let addr = (address rep (fetch rep (ram, address rep

let nevp = (add rep (p, wordn rep 1)) in
let io = ((cohn_OUTPUT rep (dsf, csf)) \/

(cohn_INPUT rep (dsf, csf, fsf))) in

let r = cohn_REG rep (rsf, a, x, y, newp) in

let m = cohn_MEMREAD rep (ram, msf,

addr, x,

Yy, io, cohn_NILM rep (dsf, csf, fsf)) in

\/

(F,F,T)) \/
(F,T,F))))

in
in
in
in
in

p))) in

let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in

let newp = (add rep (p, wordn rep 1)) in

((("stop) /\
(Test) /A
(valid_address rep newp) /\
("(dsf = (T, T,T))) /\
("(dsf = (T,T,F))) /\
(dsf = (F,F,F)) /\
(fsf = (T,T,F,F))) ==

(cohn_NEXT rep (a, x, y, p, b, F, ram) =

(cohn_VALUE aluout, x, y, newp,
cohn_BVAL aluout, cohn_SVAL aluout,
ram))))",

95

REPEAT GEN_TAC

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

cohn_
cohn_
PAIR_

EXPAND_LET_TAC
STRIP_TAC

(PURE_REWRITE_TAC [cohn_NEXT_expanded]
IMP_RES_TAC cohn_illegalcall_TTFF
IMP_RES_TAC cohn_NILM_TTFF

IMP_RES_TAC cohn_ILLEGALWRITE_TTFF
IMP_RES_TAC cohn_WRITE_TTFF
IMP_RES_TAC cohn_illegalpdest_TTFF_ill
IMP_RES_TAC cohn_illegalpdest_TTFF_pass
IMP_RES_TAC cohn_sparefunc_TTFF
ASM_REWRITE_TAC [
NOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE;

SPAREFUNC;
EQ1));;

let cohn_TTFF_FFT_aux = prove_thm
(*cohn_TTFF_FFT_aux‘,

"t (rep: rep_ty) (a
(p:*wordn) (b:bool)

(let
let
let
let
let
let
let
let

fsf = (FSF rep
dsf = (DSF rep
msf = (MSF rep
rsf = (RSF rep
csf = (CSF rep

addr = (address rep (fetch rep (ram, address rep

:swordn) (x:*wordn) (y:*wordn)

(stop:bool) (rawm:*memory)

(fetch
(fetch
(fetch
(fetch
(fetch

rep (ram, address rep p)))
rep (ram, address rep p)))
rep (ram, address rep p)))
rep (ram, address rep p)))

rep (ram, address rep p)))

newp = (add rep (p, wordn rep 1)) in
io = ((cohn_DUTPUT rep (dsf, csf)) \/

(cohn_INPUT rep (dsf, csf, fsf))) in

let

let

r = cohn_REG rep (rsf, a, x, y, newp) in

m = cohn_MEMREAD rep (ram, msf, addr, x,

y, 30, cohn_NILM rep (dsf, csf, fsf)) in

let alucut = cohn_ALU rep (fsf, msf, dsf, r, m, b) in

let newp = (add rep (p, wordn rep 1)) in

o

stop) /\

(Cesf) /\
(valid_address rep newp) /\
(~(dsf = (T,T,T)) /\
(" (dsf = (T,T,F))) /\

(dsf = (F,F,T)) /\

(fsf = (T,T,F,F))) ==>
(cohn_NEXT rep (a, x, y, p, b, F, ram) =

(a, cohn_VALUE aluout, y, newp,
cohn_BVAL aluout, cohn_SVAL aluout,

ram))))",

96

REPEAT GEN_TAC

THEN EXPAND_LET_TAC

THEN STRIP_TAC

THEN (PURE_REWRITE_TAC [cohn_NEXT_expanded]
THEN IMP_RES_TAC cohn_illegalcall_TTFF

THEN IMP_RES_TAC cohn_NILM_TTFF

THEN IMP_RES_TAC cohn_ILLEGALWRITE_TTFF
THEN IMP_RES_TAC cohn_WRITE_TTFF

THEN IMP_RES_TAC cohn_illegalpdest TTFF_ill
THEN IMP_RES_TAC cohn_illegalpdest_TTFF_pass
THEN IMP_RES_TAC cohn_sparefunc_TTFF

THEN ASM_REWRITE_TAC [

cohn_NGOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE;
cohn_SPAREFUNC;

PAIR_EQ1)):;

let cohn_TTFF_FTF_aux = prove_thm

(‘cohn_TTFF_FTF_aux',

"t (rep: rep_ty) (a:swordn) (x:*wordn) (y:#*vordn)

(p:#vordn) (b:bool) (stop:bool) (ram: *memory)

(let fsf = (FSF rep (fetch rep (ram, address rep p))) in
let dsf = (DSF rep (fetch rep (ram, address rep p))) in
let msf = (MSF rep (fetch rep (ram, address rep p)’)) in
let rsf = (RSF rep (fetch rep (ram, address rep p))) in
let csf = (CSF rep (fetch rep (ram, address rep p)}) in
let addr

[}

(address rep (fetch rep (ram, address rep p))) in

let newp = (add rep (p, wordn rep 1)) in
let io = ((cohn_OUTPUT rep (dsf, csf)) \/
(cohn_INPUT rep (dsf, csf, fsf))) in
let r = cohn_REG rep (rsf, a, x, ¥, newp) 1in
let m = cohn_MEMREAD rep (ram, msf, addr, x,
y, io, cohn_NILM rep (dsf, csf, fsf)) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, wordn rep 1)) in
((("stop) /\
(Tcsf) /\
(valid_address rep neup) /\
(" (dsf = (T,T,T))) /\
(- (dsf = (T,T,F))) /A
(dsf = (F,T,F)) /\
(fsf = (T,T,F,F))) ==>
(cohn_NEXT rep (a, x, y, p, b, F, ram) =
(a, x, cohn_VALUE aluout, newp,
cohn_BVAL aluout, cohn_SVAL aluout,

ram))))",

REPEAT GEN_TAC

THEN EXPAND_LET_TAC

THEN STRIP_TAC

THEN (PURE_REWRITE_TAC [cohn_NEXT_expanded]
THEN IMP_RES_TAC cohn_illegalcall_TTFF

THEN IMP_RES_TAC cohn_NILM_TTFF

THEN IMP_RES_TAC cohn_ILLEGALWRITE_TTFF
THEN IMP_RES_TAC cohn_WRITE_TTFF

THEN IMP_RES_TAC cohn_jllegalpdest_TTFF_ill
THEN IMP_RES_TAC cohn_illegalpdest_TTFF_pass
THEN IMP_RES_TAC cohn_sparefunc_TTFF

THEN ASM_REWRITE_TAC [

cohn_NOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE;
cohn_SPAREFUNC;

PAIR_EQI));:

let cohn_TTFF_FTT_aux = prove_thm
(‘cohn_TTFF_FTT_aux‘,

"! (rep:-rep_ty) (a:»vordn) (x:*wordn) (y:*wordn)
(p:#wordn) (b:bool) (stop:bool) (ram:smemory)

(let fsf = (FSF rep (fetch rep (ram, address rep p))) in
let dsf = (DSF rep (fetch rep (ram, address rep p))) in

let msf = (MSF rep (fetch rep (ram, address rep p)J)} in
let rsf = (RSF rep (fetch rep (ram, address rep p)J)) in

(CSF rep (fetch rep (ram, address rep p))) in

let csf
let addr = (address rep (fetch rep (ram, address rep p))) in
let newp = (add rep (p, wordn rep 1)) in
let io = ((cohn_OUTPUT rep (dsf, csf)) \/
(cohn_INPUT rep (dsf, csf, fsf))) in
let r = cohn_REG rep (rsf, a, x, y, newp) in
let m = cohn_MEMREAD rep (ram, msf, addr, x,
¥y, io, cohn_NILM rep (dsf, csf, fsf)) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, wordn rep 1)) in
((("stop) /\
(Tesf) /\
(valid_address rep newp) /\
(“(dst = (T,T,T))) /\
(" (dst = (T,T,F))) /\
(dsf = (F,T,T)) /\
(fsf = (T,T,F,F))) ==>
(cohn_NEXT rep (a, x, y, p, b, F, ram) =
(a, x, y, newp, b, T, ram))))",

98

REPEAT GEN_TAC

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
cohn

cohn_
PAIR_

EXPAND_LET_TAC

STRIP_TAC

(PURE_REWRITE_TAC (cohn_NEXT_expanded]
IMP_RES_TAC cohn_illegalcall_TTFF
IMP_RES_TAC cohn_NILM_TTFF
IMP_RES_TaAC cohn_ILLEGALWRITE_TTFF
IMP_RES_TAC cohn_WRITE_TTFF
IMP_RES_TAC cohn_illegalpdest_TTFF_ill
IMP_RES_TAC cohn_illegalpdest_TTFF_pass
IMP_RES_TAC cohn_sparefunc_TTFF
ASM_REWRITE_TAC [

-NOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE

SPAREFUNC;
EQD));;

let cohn_TTFF_TFF_aux = prove_thm

(‘cohn_TTFF_TFF_aux'®,
"! (rep: rep_ty) (a:*wordn) (x:xwordn) (y:*wordn)

(p:*wordn) (b:bool) (stop:bool) (ram:*memory)

(let
let
let
let
let
let
let
let

fsf = (FSF rep (fetch rep (ram, address rep pJ)))
dsf = (DSF rep (fetch rep (ram, address rep p)))
msf = (MSF rep (fetch rep (ram, address rep p)))
rsf = (RSF rep (fetch rep (ram, address rep p)))
csf = (CSF rep (fetch rep (ram, address ‘rep p)))
addr = (address rep (fetch rep (raw, address rep

newp = (add rep (p, vordn rep 1)) in
io = ((cohn_OUTPUT rep (dsf, csf)) \/

(cohn_INPUT rep (dsf, csf, fsf))) in

let
let

cohn_REG rep (rsf, a, x, Yy, neup) in

cohn_MEMREAD rep (ram, msf, addr, x,

r

m

Yy, 1o, cohn_NILM rep (dsf, csf, fsf)) in

let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, wordn rep 1}) in

((("stop) /\

(Tcsf) /\

(valid_address rep newp) /\
(“(dsf = (T,T,T))) /\
(“(dsf = (T,T,F))) /\

(dsf = (T,F,F)) /\
(fsf = (T,T,F,F))) ==>

(cohn_NEXT rep (a, x, y, p, b, F, ram) =

(a, x, y, newp, b, T, ram))))",
REPEAT GEN_TAC

in
in
in
in
in

p’)) in

99

THEN EXPAND_LET_TAC

THEN STRIP_TAC

THEN (PURE_REWRITE_TAC {cohn_NEXT_expanded]
THEN IMP_RES_TAC cohn_illegalcall_TTFF

THEN IMP_RES_TAC cohn NILM_TTFF

THEN IMP_RES_TAC cohn_ILLEGALWRITE_TTFF

THEN IMP_RES_TAC cohn_WRITE_TTFF

THEN IMP_RES_TAC cohn_illegalpdest TTFF_ill
THEN IMP_RES_TAC cohn_illegalpdest_TTFF_pass
THEN IMP_RES_TAC cohn_sparefunc_TTFF

THEN ASM_REWRITE_TAC [

cohn_NOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE;
cohn_SPAREFUNC;

PAIR_EQD));;

let cohn_TTFF_TFT_aux = prove_thm
(‘cohn_TTFF_TFT_aux',

"t (rep: rep_ty) (a:*wordn) (x:#wordn) (y:*wordn)
(p:#wordn) (b:bool) (stop:bool) (ram: *memory)
(let fsf

(FSF rep (fetch rep (ram, address rep p))) in
let dsf = (DSF rep (fetch rep (ram, address rep p’)) in
let msf = (MSF rep (fetch rep (ram, address rep p))) in
let rsf = (RSF rep (fetch rep (ram, address rep p))) in
let csf = (CSF rep (fetch rep (ram, address rep p))) in
let addr = (address rep (fetch rep (ram, address rep p))) in
let newp = (add rep (p, wordn rep 1)) in
let io = ((cohn_OUTPUT rep (dsf, csf)) \/

(cohn_INPUT rep (dsf, csf, fsf))) in
let r = cohn_REG rep (rsf, a, x, y, newp) in
let m = cohn_MEMREAD rep (ram, msf, addr, x,

y, io, cohn_NILM rep (dsf, csf, fsf)) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, vordn rep 1)) in
((("stop) /\

(“esf) /\
(valid_address rep newvp) /\
(" (dsf = (T,T,T))) /\
(“(dsf = (T,T,F)»)) /\
(dsf = (T,F,T)) /\
(fsf = (T,T,F,F))) ==>

(cohn_NEXT rep (a, x, y, p, b, F, ram) =

(a, x, y, newp, b, T, ram))))",

REPEAT GEN_TAC

THEN EXPAND_LET_TAC

100

THEN STRIP_TAC

THEN (PURE_REWRITE_TAC [cohn_NEXT_expanded]
THEN IMP_RES_TAC cohn_illegalcall_TTFF

THEN IMP_RES_TAC cohn_NILM_TTFF

THEN IMP_RES_TAC cohn_ILLEGALWRITE_TTFF
THEN IMP_RES_TAC cohn_WRITE_TTFF

THEN IMP_RES_TAC cohn_illegalpdest TTFF_ill
THEN IMP_RES_TAC cohn_illegalpdest _TTFF_pass
THEN IMP_RES_TAC cohn_sparefunc_TTFF

THEN ASM_REWRITE_TAC [

cohn_NOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE;

cohn_SPAREFUNC;
PAIR_EQ]));;

quit();;

%

let cohn_TTFF_aux = prove_thm
(‘cohn_TTFF_aux‘,

"} (rep: rep_ty) (a:#*wordn) (x:swordn) (y:swordn)

(p:*wordn) (b:bool) (stop:bool) (ram:*memory)

(let fsf = (FSF rep (fetch rep (ram, address rep p)))
let dsaf = (DSF rep (fetch rep (ram, address rep p)))
let msf = (MSF rep (fetch rep (ram, address rep p)))
let rsf = (RSF rep (fetch rep (ram, address rep p)))
let csf = (CSF rep (fetch rep (ram, address rep p)))
let addr = (address rep (fetch rep (ram, address rep
let newp = (add rep (p, wordn rep 1)) in
let io = ((cohn_OUTPUT rep (dsf, csf)) \/

(cohn_INPUT rep (dsf, csf, fsf))) in
let r = cohn_REG rep (rsf, a, x, y, newp) in
let m = cohn_MEMREAD rep (ram, msf, addr, x,

Yy, io, cohn_NILM rep (dsf, csf, fsf)) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
let newp = (add rep (p, wordn rep 1)) in
((("stop) /\

(Tesf) /\

(valid_address rep newp) /\
("(dsf = (T,T,T))) /\
(“(dsf = (T,T,F))) /\

((dsf = (F,F,F)) \/

(dsf = (F,F,T)) \/

(dsf = (F,T,F)) \/

in
in
in
in
in

p})) in

101

(dsf = (F,T,T)) \/
(dsf = (T,F,F)) \/
(dsf = (T,F,T»)) /\

(fsf = (T,T,F,F))) ==>
(cohn_NEXT rep (a, x, y, p, b, stop, ram) =
((dsf = (F,F,F))
=> (cohn_VALUE aluout, x, y, newp,
cohn_BVAL aluout, cohn_SVAL aluout,
ram) |
((dsf = (F,F,T))
=> (a, cohn_VALUE aluout, y, newp,
cohn_BVAL aluout, cohn_SVAL aluout,
ram) |
((dsf = (F,T,F))
=> (a, x, cohn_VALUE aluout, newp,
cohn_BVAL aluout, cohn_SVAL aluout,
ram) |
(a, x, y, newp, b, T, ram))))))",

REPEAT GEN_TAC

THEN EXPAND_LET_TAC

THEN STRIP_TAC

THEN (PURE_REWRITE_TAC [cohn_NEXT_expanded]
THEN IMP_RES_TAC cohn_illegalcall TTFF
THEN IMP_RES_TAC cohn_NILM_TTFF

THEN IMP_RES_TAC cohn_ILLEGALWRITE_TTFF
THEN IMP_RES_TAC cohn_WRITE_TTFF

THEN IMP_RES_TAC cohn_illegalpdest TTFF_ill

THEN IMP_RES_TAC cohn_illegalpdest _TTFF_pass
THEN IMP_RES_TAC cohn_sparefunc_TTFF

THEN ASM_REWRITE_TAC {
cohn_NOOP; cohn_INVALID; cohn_WRITE; cohn_ILLEGALWRITE;

cohn_SPAREFUNC;
PAIR_EQ]));:

%

%
Author: Tony Leung

University of California, Davis

Prove that the macro level ==> cohn level
%
system ‘/bin/rm cohn_shlb.th‘;;

set_search_path (search_path() @ lib_dir_list):;

loadf ‘abstract‘;;

102

nevw_theory ‘cohn_shlb‘;:

new_parent ‘aux_def‘;;
new_parent ‘cohn_viper';;
new_parent ‘macro_def‘;;
new_parent ‘cohn_TTFF_aux'‘;;

new_parent ‘cohn_eqvaux';;
let rep_ty = abstract_type 'aux_def‘' ‘opcode‘;;

let cohn_ALU EXPAND_LET_RULE (definition ‘cohn_viper' ‘cohn_ALU');;
let cohn_SVAL = definition ‘cohn_viper‘ ‘coln_SVAL‘;;

let cohn_BVAL
let cohn_VALUE = definition ‘cohn_viper' ‘cohn_VALUE';;

let cohn_INVALID = definition ‘cohn_viper‘' ‘cohn_INVALID';;

let cohn_ILLEGALCALL = definition ‘cohn_viper‘ ‘cohn_ILLEGALCALL‘;;
let cohn_SPAREFUNC definition ‘cohn_viper' ‘cohn_SPAREFUNC';;

let cohn_ILLEGALPDEST = definition ‘cohn_viper' ‘cohn_ILLEGALPDEST‘;;

n

definition ‘cohn_viper‘ ‘cohn_BVAL‘;;

"

let cohn_WRITE = definition ‘cohn_viper' ‘cohn_WRITE';;

let cohn ILLEGALWRITE = definition ‘cohn_viper‘ ‘cohn_ILLEGALWRITE®;;
let cohn_NILM = definition ‘cohn_viper‘ ‘cohn_NILM';;

let cohn_NOOP = definition ‘cohn_viper' ‘cohn_NOOP';;

let cohn_REG = definition ‘cohn_viper' ‘cohn_REG‘;;

let bt3_remaining_lemma = theorem ‘cohn_eqvaux® ‘bt3_remaining_lemma';;
let reg_eqv = theorem ‘cohn_eqvaux‘ ‘reg_eqv';;

let cohn_stop = theorem ‘cohn_eqvaux‘ ‘cohn_stop‘;;

let cohn_noinc = theorem ‘cohn_eqvaux‘ ‘cohn_noinc';;

let SHLB = definition ‘macro_def‘ ‘SHLB‘;;

let write_reg = EXPAND_LET_RULE (definition ‘macro_def‘ ‘write_reg‘);;
let load_r = EXPAND_LET_RULE (definition ‘macro_def‘ ‘load_r*);;

let write_reg_illegalpdest_aux =

theorem ‘cohn_eqvaux’ ‘Write_reg_illegalpdest_aux';;

% cohn_ALU_TTFF_TT %
let cohn_ALU_TTFF_TT = prove_thm
(‘cohn_ALU_TTFF_TT‘,
"! (rep:"rep_ty) (fsf:bt4) (msf:bt?2)
(dsf:bt3) (r:»vordn) (m:*wordn) (b:bool)
(((£sf = (T,T,F,F)) /\ (msf = (T,T))) ==
(let pwrite = ((dsf = (F,T,T)) \/ ((dsf = (T,F,F)) \/
(dsf = (T,F,T)))) in

103

(cohn_ALU rep (fsf, maf, dsf, r, m, b)

= (shlb rep (r, b), (bitn rep r), purite))))",
REPEAT GEN_TAC

THEN STRIP_TAC

THEN EXPAND_LET_TAC

THEN ASM_REWRITE_TAC[cohn_ALU;PAIR_EQ]):;

% cohn_ALU_TTFF_TT_VALUE %
let cohn_ALU_TTFF_TT_VALUE = prove_thm
(‘cohn_ALU_TTFF_TT_VALUE',
"t (rep:-rep_ty) (fsf:bt4) (msf:bt2)
(dsf:bt3) (r:svordn) (m:#wordn) (b:bool) .
(((fsf = (T,T,F,F)) /\ (msf = (T,T))) ==
(let purite = ((dsf = (F,T,T)) \/ ((dsf = (T,F,F)) \/
(dsf = (T,F,T)))) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
(cohn_VALUE aluout = (shlb rep (r,b)))))",
REPEAT GEN_TAC
THEN STRIP_TAC
THEN EXPAND_LET_TAC
THEN IMP_RES_TAC (EXPAND_LET_RULE cohn_ALU_TTFF_TT)
THEN ASM_REWRITE_TAC [cohn_VALUE]);;

% cohn_ALU_TTFF_TT_BVAL ¥%
let cohn_ALU_TTFF_TT_BVAL = prove_thm
(‘cohn_ALU_TTFF_TT_BVAL®,
"t (rep:-rep_ty) (fsf:bt4) (msf:bt2)
(dsf:bt3) (r:swordn) (m:»wordn) (b:bool) .
(((fsf = (T,T,F,F)) /\ (msf = (T,T))) ==>
(let perite = ((dsf = (F,T,T)) \/ ((dsf = (T,F,F)) \/
(dsf = (T,F,T)))) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b) in
(cohn_BVAL aluout = (bitn rep r))))",

REPEAT GEN_TAC

THEN STRIP_TAC

THEN EXPAND_LET_TAC

THEN IMP_RES_TAC (EXPAND_LET_RULE cohn_ALU_TTFF_TT)
THEN ASM_REWRITE_TAC [cohn_BVAL]):;

% cohn_ALU_TTFF_TT_SVAL %
let cohn_ALU_TTFF_TT_SVAL = prove_thu

(‘cohn_ALU_TTFF_TT_SVAL',
"1 (rep: rep_ty) (fsf:bt4) (msf:bt2)
(dsf:bt3) (r:swordn) (m:=*wordn) (b:bool) .

104

(((fsf = (T,T,.F,F)) /\ (msf = (T,T))) ==
(let purite = ((dsf = (F,T,T)) \/ ((dsf = (T,F,F)) \/
(dsf = (T,F,T)))) in
let aluout = cohn_ALU rep (fsf, msf, dsf, r, m, b} in
(cohn_SVAL aluout = pwrite)))",
REPEAT GEN_TAC
THEN STRIP_TAC
THEN EXPAND_LET_TAC
THEN IMP_RES_TAC (EXPAND_LET_RULE cohn_ALU_TTFF_TT)
THEN ASM_REWRITE_TAC [cohn_SVAL])::

let cohn ALU_TTFF_TT_FFF_SVAL_aux
= EXPAND_LET_RULE (REWRITE_RULE {PAIR_EQ]
(SPECL ["rep:“rep_ty"; "(T,T,F,F)"; "(T,T)"; “(F,F,F)";
"load_r (rep:“rep.ty) (a, x, y, add rep (p, wordn rep 1),
fetch rep (ram, address rep p))";
"cohn_MEMREAD (rep:“rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), x, ¥,
(cohn_OUTPUT rep((F,F,F),F)} \/
cohn_INPUT rep((F,F,F),F,T,T,F,F)),
cohn_NILM rep((F,F,F),F,T,T,F,F))";
"b:bool"]
cohn_ALU_TTFF_TT_SVAL));;

let cohn ALU_TTFF_TT_FFF_BVAL_aux
= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ]
(SPECL ["rep:-“rep_ty"; "(T,T,F,F)"; “(T,T)"; "(F,F,F)";
“load_r (rep:"rep_ty) (a, x, y, add rep (p, wordn rep 1),
fetch rep (ram, address rep p))";
"cohn_MEMREAD (rep:"rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), x, Y,
(cohn_OUTPUT rep((F,F,F),F) \/
cohn_INPUT rep((F,F,F),F,T,T,F,F)),
cohn_NILM rep((F,F,F),F,T,T,F,F))";
"b:bool"]
cohn_ALU_TTFF_TT_BVAL));;

let cohn_ALU_TTFF_TT_FFF_VALUE_aux

= EXPAND_LET_RULE (REWRITE_RULE (PAIR_EQ)

(SPECL ("rep:-rep_ty"; "(T,T,F,F)"; "(T,T)"; “(F,F,F)";
"load_r (rep:-rep_ty) (a, x, y, add rep (p, wordn rep 1),

105

fetch rep (ram, address rep p))";
“cohn_MEMREAD (rep:-rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), X, ¥,
{cohn_QUTPUT rep((F,F,F) ,F) \/
cohn_INPUT rep((F,F,F),F,T,T,F,F)),
cohn_NILM rep((F,F,F),F,T,T,F,F))";
"b:bool"]
cohn_ALU_TTFF_TT_VALUE));;

let cohn_ALU_TTFF_TT_FFT_SVAL_aux
= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ]
(SPECL [“rep:-rep_ty"; "(T,T,F,F}"; (T, T)'"; "(F,F,T)O";
"load_r (rep:-rep_ty) (a, x, y, add rep (p, wordn rep 1,
fetch rep (ram, address rep p))";
“cohn_MEMREAD (rep: rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), X, ¥,
(cohn_OUTPUT rep((F,F,T),F) \/
cohn_INPUT rep((F,F,T},F,T,T,F,F)),
cohn _NILM rep((F,F,T),F,T,T.F.F))":
“b:bool"]
cohn_ALU_TTFF_TT_SVAL)):;

let cohn_ALU_TTFF_TT_FFT_BVAL_aux
= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ]
(SPECL ["rep: rep_ty'; "(T,T.F,F)"; "(T,T)"; “(F,F,T)";
"load_r (rep: rep_ty) (a, x, y, add rep (p, vordun rep 1),
fetch rep (ram, address rep p))';
"cohn_MEMREAD (rep:-rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), x. ¥,
(cohn_OUTPUT rep((F,F,T),F} \/
cohn_INPUT rep((F.F.T),F,T,T,F,F)).
cohn_NILM rep((F,F,T),F,T.T,F,F))":
"b:bool"]
cohn_ALU_TTFF_TT_BVAL)):;

let cohn_ALU_TTFF_TT_FFT_VALUE_ aux

= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ]

(SPECL ["rep:-rep_ty"; "(T,T,F,F)"; v(T,T)"; "(F,F,T)";
"load_r (rep: rep_ty) (a, x, y, add rep (p, vordn rep 1),

fetch rep (ram, address rep p))'";

106

""cohn_MEMREAD (rep:“rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), x, y,
(cohn_OUTPUT rep((F,F,T),F) \/
cohn_INPUT rep((F,F,T),F,T,T,F,F)),
cohn_NILM rep((F,F,T),F,T,T,F,F))";
"b:bool"]
cohn_ALU_TTFF_TT_VALUE));;

let cohn ALU_TTFF_TT_FTF_SVAL_aux
= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ]
(SPECL ("rep: rep_ty"; "(T,T,F,F)"; "(T,T)"; "(F,T,F)";
"load_r (rep:“rep_ty) (a, x, y, add rep (p, wordn rep 1),
fetch rep (ram, address rep p))';
"cohn_MEMREAD (rep:"rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), x, y,
(cohn_OUTPUT rep((F,T,F),F) \/
cohn_INPUT rep((F,T,F),F,T,T,F,F)),
cohn_NILM rep((F,T,F),F,T,T,F,F))";
"b:bool"]
cohn_ALU_TTFF_TT_SVAL)) ;;

let cohn ALU_TTFF_TT_FTF_BVAL_aux
= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ]
(SPECL ["rep:-rep_ty"; "(T,T,F,F)"; "(T,T)"; "“(F,T,F)";
"load r (rep:"rep_ty) (a, x, y, add rep (p, wordn rep 1),
fetch rep (ram, address rep p))";
"cohn_MEMREAD (rep:“rep_ty) (ram, (T,T), address rep
(fetch rep (ram, address rep p)), x, y,
(cohn_OUTPUT rep((F,T,F),F) \/
cohn_INPUT rep((F,T,F),F,T,T,F,F)),
cohn_NILM rep((F,T,F),F,T,T,F,F))";
"b:bool"]
cohn_ALU_TTFF_TT_BVAL));;

let cohn_ALU_TTFF_TT_FTF_VALUE_aux

= EXPAND_LET_RULE (REWRITE_RULE [PAIR_EQ)

(SPECL ["rep: rep_ty"; “(T,T,F,F)"; “(T,T)"; "(F,T,F)";
"load_r (rep:"rep_ty) (a, x, y, add rep (p, wordn rep 1),
fetch rep (ram, address rep p))";

"cohn_MEMREAD (rep:“rep_ty) (ram, (T,T), address rep

107

(fetch rep (ram, address rep p)), x, ¥,
(cohn_OUTPUT rep((F,T,F),F) \/

cohn_INPUT rep((F,T,F),F,T,T,F,F)),

cohn_NILM rep((F,T,F),F,T,T,F,F))";

"b:bool"]

cohn_ALU_TTFF_TT_VALUE));;

let illegal_shlb = (SPECL ["rep: rep_ty";
"a:*wordn";
"x:egordn"; 'y:swordn'";
“add (rep:-rep_ty) (p, wordn rep 1)";
"b:bool™; "F";
"fetch (rep: rep_ty) (ram, address rep p)";
"ram:*memory";
"shlb (rep: rep_ty)
((load_r rep
(a,x,y,add rep(p,vordn rep 1),
fetch rep(ram,address rep p)}), b)";
"b:bool"]

vrite_reg_illegalpdest_aux);;

let dsf_remain = (SPEC "(DSF (rep:"rep_ty)
(fetch rep (ram, address rep p))):bt3”

bt3_remaining_lemma);;

let cohn_TTFF_FFF_aux_expanded = EXPAND_LET_RULE
(theorem ‘cohn_TTFF_aux‘ ‘cohn_TTFF_FFF_aux‘);;
let cohn_TTFF_FFT_aux_expanded = EXPAND_LET_RULE
(theorem ‘cohn_TTFF_aux‘ ‘cohn_TTFF_FFT_aux‘);;
let cohn_TTFF_FTF_aux_expanded = EXPAND_LET_RULE
(theorem ‘cohn_TTFF_aux‘ ‘cohn_TTFF_FTF_aux‘);;
let cohn_TTFF_FTT_aux_expanded = EXPAND_LET_RULE
(theorem ‘cohn_TTFF_aux‘ ‘cohn_TTFF_FTT_aux‘):;
let cohn_TTFF_TFF_aux_expanded = EXPAND_LET_RULE

(theorem ‘cohn_TTFF_aux‘ ‘cohn_TTFF_TFF_aux®);;
let cohn_TTFF_TFT_aux_expanded = EXPAND_LET_RULE

(theorem ‘cohn_TTFF_aux‘ ‘cohn_TTFF_TFT_aux‘);;
% shlb %

set_goal([],

"1 (rep:"rep_ty) (a:#wordn) (x:*wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:*memory) .

((~(CSF rep (fetch rep (ram, (address rep p)})) /\

(" (DSF rep (fetch rep (ram, (address rep p)))=(T,T,F))) /\

("(DSF rep (fetch rep (ram, address rep p))=(T,T,T))) /A

108

(FSF rep (fetch rep (ram, address rep p)) = (T,T,F,F)) /\
(MSF rep (fetch rep (ram, address rep p)) = (T,T)))

(SHLB rep (a, x, y, p, b, stop, ram) =
cohn_NEXT rep (a, x, y, p, b, stop, ram)))'");;

e (REPEAT GEN_TAC

THEN STRIP_TAC

THEN PURE_REWRITE_TAC [SHLB]

THEN EXPAND_LET_TAC

THEN ASM_CASES_TAC "stop:bool"

THEN IMP_RES_TAC cohn_stop

THEN ASM_REWRITE_TAC([]

THEN ASM_CASES_TAC "~ (valid_address (rep: rep_ty)
(add rep (p, wordn rep 1))):bool");;

e (IMP_RES_TAC (EXPAND_LET_RULE cohn_noinc)
THEN ASM_REWRITE_TAC[]

THEN ASM_REWRITE_TAC[]);;

e (ASSUM_LIST (\asl. ASSUME_TAC (REWRITE_RULE
(el 19 asl] (el 1 asl)))

THEN ASM_REWRITE_TAC[]);;

e (ASSUM_LIST (\asl. ASSUME_TAC (REWRITE_RULE
[J (el 1 asl))));;

e (ASM_CASES_TAC "((DSF (rep: rep_ty) (fetch rep (ram, address rep p)))

= (F,F,F)):bool");;

e (IMP_RES_TAC cohn_TTFF_FFF_aux_expanded

THEN ASM_REWRITE_TAC [cohn_ALU_TTFF_TT_FFF_VALUE_aux;

cohn_ALU_TTFF_TT_FFF_SVAL_aux;
cohn_ALU_TTFF_TT_FFF_BVAL_aux;
reg_eqv; write_reg; PAIR_EQ));;

e (ASM_CASES_TAC "((DSF (rep:-rep_ty) (fetch rep (ram, address rep p)))

= (F,F,T)):bool");;

e (IMP_RES_TAC cohn_TTFF_FFT_aux_expanded

THEN ASM_REWRITE_TAC [cohn_ALU_TTFF_TT_FFT_VALUE_aux;

cohn_ALU_TTFF_TT_FFT_SVAL_aux;
cohn_ALU_TTFF_TT_FFT_BVAL_aux;
reg_eqv; write_reg; PATR_EQ]);;

e (ASM_CASES_TAC "((DSF (rep: rep_ty) (fetch rep (ram, address rep p)))

= (F,T,F)):bool");;

e (IMP_RES_TAC cohn_TTFF_FTF_aux_expanded

THEN ASM_REWRITE_TAC [cohn_ALU_TTFF_TT_FTF_VALUE_ aux;

109

cohn_ALU_TTFF_TT_FTF_SVAL_aux;
cohn_ALU_TTFF_TT_FTF_BVAL_aux;
reg_eqv; vrite_reg; PAIR_EQ]);;

e (ASM_CASES_TAC "((DSF (rep: rep_ty) (fetch rep (ram, address rep p)))
= (F,T,T)):bool");;

e (IMP_RES_TAC cohn_TTFF_FTT_aux_expanded
THEN IMP_RES_TAC illegal_shlb
THEN ASM_REWRITE_TAC [reg_eqv; write_reg; PAIR_EQ]);;

e (ASM_CASES_TAC "((DSF (rep:-rep_ty) (fetch rep (ram, address rep p)))
= (T,F,F)):bool");;

e (IMP_RES_TAC cohn_TTFF_TFF_aux_expanded
THEN IMP_RES_TAC illegal_shlb
THEN ASM_REWRITE_TAC [reg_eqv; write_reg; PAIR_EQ));;

e (IMP_RES_TAC dsf_remain);;

e (IMP_RES_TAC cohn_TTFF_TFT_aux_expanded
THEN IMP_RES_TAC illegal_shlb
THEN ASM_REWRITE_TAC [reg_eqv; write_reg; PAIR_EQ));:

110

Appendix D: MACRO LEVEL SPECIFICATION

File: def_ucode.ml

Description: Defines the selectors for fields of a microinstruction
__ Y
set_search_path (search_path() @ lib_dir_list);;
system ‘/bin/rm uccde_def.th';;
new_theory ‘ucode_def‘;;

map new_parent [‘tuple‘];;

nev_type_abbrev(‘ucode’,
":(bt7#(bt3#bt4)8bool# (bool#boolébool)#(bt2#tbt3tboolbool)#
(bool#bool)#(bool¥bool#bt2))"

__ %

let Maddr = new_definition
(‘Maddr‘,
"t(rd vr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:btd) (ua:bt7?).
Maddr (ua,(sctl,actl),decctl,(rd,wr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = ua"

)i

let Seqctl = new_definition
('Seqctl’,
"1(rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:btd) (ua:bt7).
Seqctl (ua,(sctl,actl),decctl, (rd,wr,inout),(urf,udf,rfctl, dfctl),
(den,ren), (asel,dsel,msel)) = sctl”

Yis

let Aluctl = new_definition
(‘Aluctl®,

"1 (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)

111

(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Aluctl (ua,(sctl,actl),decctl, (rd,wr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = actl"
N

let Dec_ctl = new_definition
(‘Dec_ctl®,
"1 (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Dec_ctl (ua,(sctl,actl),decctl, (rd,wr,inout),{urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = decctl"

VR

let R = new_definition
(‘RY,
"“1(rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
R (ua,(sctl,actl),decctl,(rd,wr,inout),(urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = rd"

)i

let W = new_definition
(‘we,
"1 (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:btd) (ua:bt7).
W (ua,(sctl,actl),decctl,(rd,vr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = wr"

)i

let Io = new_definition
(*Io¢,
"1(rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Io (ua,(sctl,actl),decctl,(rd,wr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = inout"
)i

let Mrf = new_definition
(‘Mrf¢,
"1 (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7?).
Mrf (ua,(sctl,actl),decctl, (rd,wr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = urf"

)i

let Mdf = new_definition
(‘Mdf*,

112

"t (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Mdf (ua, (sctl,actl),decctl, (rd,wr,inout), (urf,udf,rfctl,dfctl),

(den,ren), (asel,dsel,msel)) = udf"

)i

let Rfc = new_definition
(‘Rfc‘,
"1 (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Rfc (ua, (sctl,actl),decctl, (rd,wr,inout), (urf,udf,rfctl,dfctl),

(den,ren), (asel,dsel,msel)) = rfctl"

)i

let Dfc = new_definition
(‘Dfc‘,
"t (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Dfc (ua,(sctl,actl),decctl,(rd,wr,inout),(urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = dfctl"

)i

let De = new_definition
(‘De‘,
"1 (rd vr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
De (ua,(sctl,actl),decctl.(rd,vr,inout),(urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = den"

)i

let Re = new_definition
(‘Re‘,
"1 (rd wr inout decctl rfctl dfctl den reén asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Re (ua,{sctl,actl),decctl,(rd,vwr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = ren”

Yis

let Adrs = new_definition
(‘Adrs*,
"t(rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Adrs (ua, (sctl,actl),decctl, (rd,vr,inout),(urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = asel”

)i

let Ds = new_definition
(‘Ds‘,

113

"1 (rd wr inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Ds (ua, (sctl,actl),decctl, (rd,wr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)}) = dsel"”
)i

let Ms = nev_definition
(‘Ms‘,
"t(rd 9r inout decctl rfctl dfctl den ren asel dsel:bool)
(urf msel:bt2) (sctl udf:bt3) (actl:bt4) (ua:bt7).
Ms (ua,(sctl,actl),decctl, (rd,uwr,inout), (urf,udf,rfctl,dfctl),
(den,ren), (asel,dsel,msel)) = msel”

)i

close_theory();;

114

%

The Macro level of Viper
University of California, Davis
Viper’s macro level
modifications

- changed formatting and reordered opnds to add rep

- SUBS changed to SUBD

~ changed write_preg so that if skip, stop is set to F
- changed SHL to use ovflw = bitn rep ldr

- added expanded defns for load_m, load_r, etc

%

system ‘/bin/rm macro_def.th';;

set_search_path (search_path() @ lib_dir_list);;
loadf ‘abstract';;

new_theory ‘macro_def‘;;

new_parent ‘taux_def‘;;

let rep_ty = abstract_type ‘aux_def‘ ‘opcodel;;

let load_m = new_definition('load_m’,
"1 (rep:-rep_ty) (a:swordn) (x:*wordn) (y:swordn} (p:*wordn)
(ir:*vordn) (ram:*memory)
load_m rep (a, x, y, p, ir, ram) =
let msfValue = (MSF rep ir) 1in
let tmp = (address rep ir) in
let addr = (pad rep tmp) in
((msfValue = (F,F)) => (F, addr)
((msfValue = (F,T)) => (F, (fetch rep (ram, (address rep addr))))

((msfValue = (T,F)) => (let t = (add rep (x, addr)) in
((valid_address rep t) =>

(F, fetch rep (ram, (address rep t})) |

(T, addr))) |

(let t = (add rep (y, addr)) in

((valid_address rep t) =>

115

(F, (fetch rep (ram, (address rep t)))) |
(T, addr))))))™;;

save_thm(‘load_n_expanded‘, EXPAND_LET_RULE load_m);;

let load_io = new_definition(‘load_io*,

"t (rep:-rep_ty) (a:*wordn) (x:*wordn) (y:#wordn) (p:*wordn)
(ir:evordn) (ram:s*memory)

load_io rep (a, x, Yy, P, ir, ram) =

let msfValue = (MSF rep ir) in

let tmp = (address rep ir) in

let addr = (pad rep tmp) in

((msfValue = (F,F)) => (F, addr) |

((msfValue = (F,T)) => (F, (fetchio rep (ram, (address rep addr)))) |

((msfValue = (T,F)) => (let t = (add rep (x, addr)) in

((valid_address rep t) =>

(F, fetchio rep (ram, (address rep t))) |

(T, addr))) |

(let t = (add rep (y, addr)) in

((valid_address rep t) =>

(F, (fetchio rep (ram, (address rep t)J)) |

(T, addr))))))");;

save_thm(‘load_io_expanded‘, EXPAND_LET_RULE load_io);;

let load_r = new_definition(‘load_r*,
"! (rep:“rep.ty) (a:*wordn) (x:swordn) (y:#vwordn) (p:*wordn)
(ir:swordn) .
load_r rep (a, x, y, p, ir) =

let rsfValue = (RSF rep ir) in

((rsfValue = (F,F)) => a |
((rsfValue = (F,T)) => x |
((rsfValue = (T,F)) => y |

| IDDAOEN

save_thm(‘load_r_expanded‘, EXPAND_LET_RULE load_r);;

let write_reg = nevw_definition(‘write_reg*,
"t (rep: rep_ty) (a:svordn) (x:*wordn) (y:»wordn) (p:swordn) (b:bool)
(stop:bool) (ir:=wordn) (ram:smemory) (value:swordn) (newb:bool).
write_reg rep (a, x, Yy, p, b, stop, ir, ram, value, newb) =
let dsfValue = (DSF rep ir) in
((dsfValue = (F,F,F)) => (value, x, Y, p, newb, stop, ram) |

116

((dsfvalue = (F,F,T)) => (a, value, y, p, newb, stop, ram) |
((dsfValue = (F,T,F)) => (a, x, value, p, newdb, stop, ram) |
(a, x, y, p, b, T, ram))))"):;

save_thm(‘write_reg_expanded‘, EXPAND_LET_RULE vrite_reg);;

let vrite_preg = new_definition(‘write_preg‘,
"t (rep:"rep_ty) (a:»wordn) (x:*wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ir:ewordn) (ram:=*memory) (value:*wordn)
write_preg rep (a, x, Y. p, b, stop, ir, ram, value) =
let dsfValue = (DSF rep ir) in
let call = ((CSF rep ir) = (F)) /\ ((FSF rep ir) = (F,F,F,T)) in
((dstValue = (F,F,F)) => (value, x, ¥, p, b, stop, ram) |
((dsfValue = (F,F,T)) => (a, value, Y, p, b, stop, ram) |
((dsfValue = (F,T,F)) => (a, x, value, p, b, stop, ram) |
((dsfvalue = (T,T,F)) => (a, x, y, p, b, T, ram) |
((dsfvalue = (T,T,T)) => (a, «x, Y, P, b, T, Tram) |
((((dsfValue = (T,F,F)) /\ "b) \/
((dsfValue = (T,F,T)) /\ b)) => (a, x, y, p, b, F, ram) |
(call => (a, x, p, value, b, (((valid_address rep value)) \/ stop),

ram) |
(a, x, y, value, b,(stop\/ (valid_address rep value)),ram))))))))");;

save_thm(‘write_preg_expanded‘, EXPAND_LET_RULE write_preg);:

let CMP = new_definition(‘CMP',

"t (rep: rep_ty) (a:*wordn) (x:s*wordn) (y:*wordn) (p:swordn) (b:bool)
(stop:bool) (ram:*memory)

CMP rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, Y, p, b, stop, ram) |

(let newp = (add rep (p, wordn rep 1)) in

(("valid_address rep newp) =»>

(a, x, y, newp, b, T, ram) |

(let ir = (fetch rep (ram, address rep p)) in

let m = (load_m rep (a, x, y, newp, ir, ram)) in

((FST m) => % invalid memory load ¥

(a, x, y, newp, b, T, ram) |

117

(let ldr = (load_r rep (a, x, ¥, newp, ir)) in
let ldm = (SND m) in
let fsf = (FSF rep ir) in
(a, x, y, newp, (bcmp rep(ldr, ldm, b, fsf)) ,F,ram)))))))") i

%
negate a value
%

let NEG = new_definition(‘HEG‘,

"t (rep:-rep_ty) (a:*wordn) (x:*wordn) (y:#wordn) (p:*vordn)

(b:bool) (stop:bool) (ram:*menory)

NEG rep (a, x, y. p,» b, stop, ram) =

(stop => (a, x, y, p» b, stop, ram) |

(let newp = (add rep (p, wordn rep 1)) 1n
((~valid_address rep newp) =>

(a, x, y, nevp, b, T, ram) |

(let ir = (fetch rep (ram, address rep p)) in

let m = (load_m rep (a, x, ¥y, Dewp, ir, ram)) in
((FST m) => % invalid memory load %

(a, x, y, newp, b, T, ram) |

(let 1dm = (SND m) in

let result = (neg rep ldm) in

write_reg rep (a, X, y, newp, v, F, ir, ram; result, b))

%
Add without overflow detection.
%
let ADDB = nev_definition(‘ADDB‘.
"1 (rep: Tep.ty) (a:*wordn) (x:*wordn) (y:*wordn) (p:*wordn)
{b:bool) (stop:bool) (ram: *memory)
ADDB rep (a, X, y, P, b, stop, ram) =
(stop => (a, X, ¥y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
((“valid_address rep neup) =>
(a, x, y, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
et m = (load_m rep (a, x, y, Newp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, nevp, b, T, ram) |
(let ldm = (SKD m) in
let ldr = (load_r rep (a, x, y, newp, ir)) in
let result = (add rep (ldr, ldm)) in

% get result, addition with carry %

118

let carry = (addp rep (idr, ldm, result)) in % get carry ¥

write_reg rep (a, x, y, newp, b,F,ir,ram,result,carry)))))))”);;

h
Add with overflow detection.
h
let ADDS = new_definition(‘ADDS",

"! (rep:“rep_ty) (a:swordn) (x:swordn) (y:swordn) (p:#wordn) (b:bool) (stop:bool) (ram:*memory)
ADDS rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, y, p, b, stop, ram) |

(let newp = (add rep (p, wordn rep 1)) in

(("valid_address rep newp) =>

(a, x, y, newp, b, T, ram) |

(let ir = (fetch rep (ram, address rep p)) in

let m = (load_m rep (a, x, y, newp, ir, ram)) in

((FST m) => % invalid memory load ¥

(a, x, y, newp, b, T, ram) |

(let 1dm = (SND m) in

let 1dr = (load_r rep (a, x, Yy, newp, ir)) in

let result = (add rep (1dr, ldm)) in

let ovflw = (aovfl rep (ldr, ldm, result)) in % detect overflow,

write_preg rep (a, x, y, hewp, b, ovflw, ir, ram, result)))))))");:

%
Subtract without overflow detection.
%
let SUBB = nev_definition(‘SUBB*,

"! (rep:~rep_ty) (a:*wordn) (x:*wordn) (y:*vordn) (p:*wordn)

(b:bool) (stop:bool) (ram: *memory)

SUBB rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
(("valid_address rep newp) =>
(a, x, y, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in

let m = (load_m rep (a, x, Yy, newp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, newp, b, T, ram) |
(let 1dm = (SND m) in

let 1dr = (load_r rep (a, x, y, newp, ir)) in

let result = (sub rep (ldr, ldm)) in

let carry = (subp rep (1dr, ldm, result)) in % detect carry %

vrite_reg rep (a, x, y, newp, b, F, ir, ram,result,carry))})))))");;

119

%
Subtract with overflow detection
%
let SUBO = new_definition(‘SUBO,
"1 (rep: rep.ty) (a:*wordn) (x:xwordn) (y:*wordn) (p:*wordn) (b:bool)
SUBO rep (a, x, ¥, p, b, stop, ram) =
(stop => (a, x, ¥, P, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
(¢-valid_address rep newp) =>
(a, x, y, nevp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let m = (load_m rep (a, x, ¥y, newp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, nevp, b, T, ram) |
(let ldm = (SND m) in
let ldr = (load.r rep (a, x, y, nevp, ir)) in
let result = {sub rep (ldr, ldm)) in
let ovflw = (sovfl rep (ldr, ldm, result)) in % overflow detection %
write_preg rep (a, X, ¥, newp,b.ovflu,ir.ram,result)))))))“);;
%
Exclusive OR between two operands
%
let XDR = new_definition(‘XOR®,
") (rep: rep_ty) (a:#wordn) (x:*wordn) (y:»wordn) (p:#vordn) (b:bool)
(stop:bool) (ram:*nemory) .
XOR rep (a, x, y, P, b, stop, ram) =
(stop => (a, X, ¥, P, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
(("valid_address rep nevp) =>
(a, x, y, nevp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let m = (load_m rep (a, x, y, newp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, newp, b, T, ram) |
(let ldm = (SND m) in
let 1dr = (load_r rep (a, x, ¥y, newp, ir)) in
let result = (bxor rep (1dr, ldm)) in

write_reg rep (a, x, y, newp, b, F, ir, ram, result, b))

%

And between two operands

(stop:bool) (ram

:smemory) .

let AND = new_definition(‘AND‘,
"t (rep:-rep_ty) (a:*wordn) (x:#wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:=*memory)
AND rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, ¥, P, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
(("valid_address rep newp) =>
(a, x, y, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let m = (load_m rep (a, X, y, nevp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, newp, b, T, ram) |
(let ldm = (SND m) in
let ldr = (load_r rep (a, x, y, newp, ir)) in
let result = (band rep (ldr, ldm)) in
write_reg rep (a, x, y, neup, b, F, ir, ram, result, b))}
%
NOR between two operands
%
let NOR = new_definition(‘NOR‘,
") (rep:-rep_ty) (a:»wordn) (x:*wordn) (y:swordn) (p:*wordn) (b:bool)
(stop:bool) (ram:=memory)
NOR rep (a, x, y, p,» b, stop, ram) =
(stop => (a, x, y, p» b, stop, ram) |
(let nevwp = (add rep (p, wordn rep L)) 1n
((~valid_address rep newp) =>
(a, x, y, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep pJ)) in
let m = (load_m rep (a, x, y, newp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, newp, b, T, ram) |
(let 1dm = (SND m) in
let ldr = (load_r rep (a, x, y, newp, ir)) in
let result = (bnor rep (ldr, ldm)) in

write_reg rep (a, x, y, newp, b, F, ir, ram, result, b)))))))"};;

%

ANDMBAR between two operands

%

let ANDMBAR = new_definition(‘ANDMBAR®,

“t (rep:-rep_ty) (a:swordn) (x:#wordn) (y:swordn) (p:*wordn) (b:bool)
(stop:bool) (ram:#*umemory)

ANDMBAR rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, ¥y, P, b, stop, ram) |

121

(let newp = (add rep (p, wordn rep 1)) in
(("valid_address rep newp) =>

(a, x, y, newp, b, T, ram) |

(let ir = (fetch rep (ram, address rep p)) in

let m = (load_m rep (a, x, y, newp, ir, ram)) in
((FST m) => % invalid memory load %

(a, x, y, newp, b, T, ram) |

(let l1dm = (SND m) in

let ldr = (load_r rep (a, x, y, newp, ir)) in

let result = (band rep (ldr, bnot rep ldm)) in

vrite_reg rep (a, x, y, newp, b, F, ir, ram, result, b)))))))");;

%
Shift right, copy sign bit
%
let SHR = new_definition(‘SHR',
"t (rep:~rep_ty) (a:swordn) (x:*wordn) (y:*wordn) (p:#wordn) (b:bool)
(stop:bool) (ram:*memory)
SHR rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
(("valid_address rep newp) =>
(a, x, ¥, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let 1dr = (load_r rep (a, x, y, newp, ir)) in
let result = (shr rep ldr) in
vrite reg rep (a, x, y, newp, b, F, ir, ram, result, b)))))");;
%
Shift right through b
%
let SHRB = nev_definition(‘SHRB',
"} (rep: rep_ty) (a:swordn) (x:#*wordn) (y:#*wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:*memory)
SHRB rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in

>

(("valid_address rep newp)
(a, x, y, newp, b, T, ram) |

(let ir = (fetch rep (ram, address rep p)) in

let ldr = (load_r rep (a, x, y, newp, ir)) in
let result = (shrb rep (ldr, b)) in

let newb = (bit0 rep 1ldr) in

vrite_reg rep (a, x, y, newp, b, F, ir, ram, result, newb)))))");;

122

%
Shift left
%
let SHL = new_definition(‘SHL‘,
"1 (rep: rep_ty) (a:*wordn) (x:*wordn) (y:swordn) (p:*wordn) (b:bool)
(stop:bool) (ram:*memory)
SHL rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, vordn rep 1)) in
(("valid_address rep newp) =>
(a, x, y, newp, b, T, ram)
(let ir = (fetch rep (ram, address rep p)) in
let 1dr = (load_r rep (a, x, y, newp, ir)) in
let result = (shl rep ldr) in
% let ovflw = (aovfl rep (ldr, 1ldr, result)) in %
let ovflw = (bitn rep 1ldr) in

write_reg rep (a, x, y, newp, b, ovflw, ir, ram, result, bJ)))))");;

%

Shift left through b

%

let SHLB = new_definition(‘SHLB*,

"1t (rep:-rep_ty) (a:»wordn) (x:*wordn) (y:*wordn) (p:*wordn) (b:bool)

(stop:bool) (ram:*memory)

SHLB rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |

(let newp = (add rep (p, wordn rep 1)) in

(("valid_address rep newp) =>

(a, x, y, newp, b, T, ram)

(let ir = (fetch rep (ram, address rep p)) in
let 1dr = (load_r rep (a, x, y, newp, ir)) in
let result = (shlb rep (ldr, b)) in
let newb = (bitn rep ldr) in

write_reg rep (a, x, y, newp, b, F, ir, ram, result, newb)))))'");;

let CALL = new_definition('CALL"',

"t (rep:"rep_ty) (a:swordn) (x:*wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:*memory) .

CALL rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, y, p, b, stop, ram) |

(let newp = (add rep (p, wordn rep 1)) in

(("valid_address rep newp) =>

123

(a, x, y, nevp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let m = (lcad_m rep (a, x, y, newp, ir, ram)) in
((FST m) => % invalid memory load %
(a, x, y, newp, b, T, ram)
(let ldm = (SND m) in
let 1dr = (load_r rep (a, x, y, newp, ir)) in
let dsf = (DSF rep ir) in
(a, x, newp, ldm, b, ("(valid_address rep ldw)), ram)))))))");;

% vas: write_preg rep(a, x, y, newp, b, F, ir, ram, 1dm)))))3)"):; %

let READM = nev_definition(‘READM‘,
"1 (rep:-rep_ty) (a:*wordn) (x:swordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:*memory) .
READM rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
((“valid_address rep newp) =>
(a, x, y, newp, b, T, ram)
(let ir = (fetch rep (ram, address rep p)) in
let m = (load_m rep (a, x, y, newp, ir, ram)) in
((FST w) => % invalid memory load %
(a, x, y, newp, b, T, ram) |
(let ldm = (SND m) in
write_preg rep (a, x, y, nevp, b, F, ir, ram, 1dm)))))))") s

let READIO = new_definition(‘READID®,

"1 (rep: rep_ty) (a:#vordn) (x:*wordn) (y:*wordn) (p:#wordn) (b:bool)
(stop:bool) (ram:*memory)

READIO rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, y, p, b, stop, ram) |

(let newp = (add rep (p, wordn rep 1)) in

(("valid_address rep newp) =>

(a, x, y, newp, b, T, ram) |

(let ir = (fetch rep (ram, address rep p)) in

let m = (load_io rep (a, x, y, newp, ir, ram)) in

((FST m) => % invalid memory load %

(a, x, y, newp, b, T, ram) |

(let 1ldm = (SND m) in

write_reg rep (a, x, y, newp, b, F, ir, ram, ldm, b))

124

let WRITEIO = new_definition(‘WRITEIQ',
") (rep: rep_ty) (a:#wordn) (x:*wordn) (y:*wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:*memory)
WRITEIO rep (a, x, y, p, b, stop, ram) =
(stop => (a, x, y, p, b, stop, ram) |
(let newp = (add rep (p, wordn rep 1)) in
(("valid_address rep newp) =>
(a, x, y, newp, b, T, ram) |
(let ir = (fetch rep (ram, address rep p)) in
let value = load_r rep (a, x, y, newp, ir) in
let msfValue = (MSF rep ir) in
let addr = (address rep ir) in
((msfValue = (F,F)) => (a, x, y, newp, b, T, ram) |
((msfValue = (F,T)) =>
(a, x, y, nevwp, b, F, (storeio rep (ram, addr, value)))
((msfValue = (T,F)) => (let t = (add rep (x, (pad rep addr))) in
((valid_address rep t) =>
(a, x, y, newp, b, F, (storeio rep(ran, (address rep t), value))) |
(a, x, y, newp, b, T, ram))) |
(let t = (add rep (y, (pad rep addr))) in
((valid_address rep t) =>
(a, x, y, newp, b, F, (storeio rep(ram, (address rep t), value))) |

(a, x, y, newp, b, T, ram))))))))))");;

let WRITEM = new_definition(‘WRITEM®,
"1 (rep:-rep_ty) (a:swordn) (x:*wordn) (y:®wordn) (p:*wordn) (b:bool)
(stop:bool) (ram:smemory) .

WRITEM rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, y, p, b, stop, ram)

(let newp = (add rep (p, wordn rep 1)) in

(("valid_address rep newp) =>
(a, x, y, nevwp, b, T, ram)

(let ir = (fetch rep (ram, address rep p)) in
let value = load_r rep (a, x, y, newp, ir) in
let msfValue = (MSF rep ir) in
let addr = (address rep ir) in
((msfValue = (F,F)) => (a, x, y, newp, b, T, ram) | % msf = 00 ¥
((msfValue = (F,T)) =>

(a, x, y, newp, b, F, (store rep (ram, addr, value))) |

((msfValue = (T,F)) => (let t = (add rep (x, (pad rep addr))) in
((valid_address rep t) =>

(a, x, y, newp, b, F,(store rep(ram, (address rep t), value)))|

125

(a, x, y, nevp, b, T, ram))) |
(let t = (add rep (y, (pad rep addr))) in
((valid_address rep t) =>
(a, x, y, newp,b,F,(store rep(ram, (address rep t),value)))

(a, x, y, newp, b, T, ram)})}))))))");;

let NOOP_M = new_definition(‘NOOP_M‘,

"} (rep: rep_ty) (a:swordn) (x:*vordn) (y:*wordn) (p:#wordn) (b:bool)
(stop:bool) (ram:smemory) .

NOOP_M rep (a, x, y, p, b, stop, ram) =

(stop => (a, x, y, p, b, stop, ram)

(let newp = (add rep (p, wordn rep 1)) in

((“valid_address rep newp) =>

(a, x, y, nevp, b, T, ram) |

(a, x, y, add rep (p, (wordn rep 1)), b, F, ram})))");;

let macro_state = : ((*wordn)#(*vordn)#(*wordn)#(*wordn)#bool#bool#(*memory))";;
let macro_env = ":(bool}";;
A

ABS_ENV takes a function of type (macro_state -> macro_state)
and creates a function of type (macro_state -> macro_env -> macro_state).
The purpose of this function is to make the functions defining the

instructions have the right type for use in the instruction list.

let ABS_ENV = new_definition
(*ABS_ENV',
"1 (f:"macro_state->"macro_state) (x: macro_state) (y: macro_env)

ABS_ENV £ x y = f x"
)i

let macro_inst_list = new_definition
(‘macro_inst_list‘,

"t (rep:-rep_ty)

macro_inst_list rep
{ ((F,F,F,F,F),ABS_ENV (NOOP_M rep));

((F,F,F,F,T),ABS_ENV (SHR rep));
((F,F,F,T,F),ABS_ENV (SHRB rep));
((F,F,F,T,T),ABS_ENV (SHLB rep));
((F,F,T,F,F),ABS_ENV (SHL rep));
((F,F,T,F,T),ABS_ENV (CMP rep));
((F,F,T,T,F),ABS_ENV (WRITEM rep));
((F,F,T,T,T),ABS_ENV (WRITEIO rep));
((F,T,F,F,F),ABS_ENV (NEG rep));

126

((F,T,F,F,T),ABS_ENV (CALL rep));

((F,T,F,T,F),ABS_ENV
((F,T,F,T,T),ABS_ENV
((F,T,T,F,F),ABS_ENV
((F,T,T,F,T),ABS_ENV
((F,T,T,T,F),ABS_ENV
((F,T,T,T,T),ABS_ENV
((T,F,F,F,F),ABS_ENV
((T,F,F,F,T),ABS_ENV
((T,F,F,T,F),ABS_ENV
((T,F,F,T,T),ABS_ENV
((T,F,T,F,F),ABS_ENV
((T,F,T,F,T),ABS_ENV

((T,F,T,T,T),ABS_ENV (NOOP_M
((T,T,F,F,F),ABS_ENV (NOOP_M rep));
((T,T,F,F,T),ABS_ENV (NOOP_M rep));
((T,T,F,T,F),ABS_ENV (NGOP_M rep));
((T,T,F,T,T),ABS_ENV (NOOP_M rep)):
((T,T,T,F,F),ABS_ENV (NOOP_M rep));
((T,T,T,F,T),ABS_ENV (NDOP_M rep));
((T,T,T,T,F),ABS_ENV (NDOP_M rep));

((T,T,T,T,T) ,ABS_ENV (NOOP_M rep));]");;

(READIO rep));
(READM rep)J;
(ADDB rep));
(ADDS rep));
(SUBB rep));
(SUBQ rep));
(XOR rep)};
(AND rep));
(NOR rep));
(ANDMBAR rep));
(NOGP_M rep));
(NDOP_M rep));
rep)’;

% return the key base on the state %

let Opcode = nev_definition

(‘Opcode’,

"t (rep:-rep_ty) (a:swordn) (x:*wordn) (y:=swordn) (p:*wordn) (b:bool)

(stop:bool) (ram:*memory) (reset:bool) .

Opcode rep (a, x, y, p, b, stop, ram) (reset) =

(FST (SND (decode rep ({opcode rep

(fetch rep (ram, address rep p))), b))))");;

let Opc_Val = new_definition

(‘Opc_val‘,

(x:bt5) .

Opc_Val x =
(btS_val x)"

)i

close_theory();;

127

% new_inst_aux updates "update_reg' usage to include new "b" paraweter %

load_parent ‘regs_def‘;;
load_parent ‘aux_thms‘;;

load_parent ‘macro_def‘;;

let REG_LIST_LENGTH = new_definition
(‘REG_LIST_LENGTH',
"REG_LIST_LENGTH (rep: rep_ty) =

b (1:(#wordn) list) . (LENGTH 1 = p_reg)');;

let EL_SET_EL_TAC =
REPEAT GEN_TAC
THEN REWRITE_TAC[A;X;Y;P]
THEN CONV_TAC (TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC{LENGTH_CONS]
THEN DISCH_TAC
THEN POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC(rev (CONJUNCTS thm)))
THEN POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THENL
[ALL_TAC

POP_ASSUM{\thm. DISJ_CASES_TAC thm)

]
THEN POP_ASSUM(\theCase.
POP_ASSUM(\thm. ASSUME_TAC(REWRITE_RULE[theCase] thm))
THEN REWRITE_TAC [theCase])
THEN PDP_ASSUM(\thm. CHGOSE_THEN CHOOSE_TAC thnm)
THEN POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC(rev(CONJUNCTS thm)))
THEN POP_ASSUM(\thm. CHOOSE_THEN CHOOSE_TAC thu)
THEN POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC(rev (CONJUNCTS thm)))
THEN POP_ASSUM(\thm. CHOOSE_THEN CHOUSE_TAC thnm)
THEN POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC(rev (CONJUNCTS thm)))
THEN ASM_REWRITE_TAC []
THEN CONV_TAC (TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC [EL;SET_EL;HD;TL];;

Run time: 76.5s
Intermediate theorems generated: 4412

let INDEP_A_UPDATE = prove_thm(‘'INDEP_A_UPDATE,,

128

“1(n:num) (1l:#wordn list) (z:#*wordn).
(((a = x_reg) \/ (n = y_reg) \/ (n = p-reg))
(LENGTH 1 = p_reg)
==> ((EL n (SET_EL a_reg 1 2) y = ELn D",
EL_SET_EL_TAC) ;;

let INDEP_X_UPDATE = prove_thm(‘INDEP_X_UPDATE‘,
wi(n:num) (1l:*vordn list) (z:*wordn) .
(((n = a_reg) \/ (n =y_reg) \/ (n = p_reg))
(LENGTH 1 = p_reg))
==> ((EL n (SET_EL x_reg 1 z)) = ELn D",
EL_SET_EL_TAC J;;

let INDEP_Y_UPDATE = prove_thm(‘INDEP_Y_UPDATE‘.
“1 (n:num) (l:#wordn list) (z:*wordn) .
(((n = a_reg) \/ (n = x_reg) \/ (n = p.reg))
(LENGTH 1 = p_reg))
==> ((EL n (SET_EL y_reg 1 2)) =ELn n-,
EL_SET_EL_TAC) ;;

let INDEP_P_UPDATE = prove_thm(‘INDEP_P_UPDATE',
“1(n:num) (l:*wordn list) (z:+wordn)
(((n = a_reg) \/ (n = x_reg) \/ (n = y_reg))
(LENGTH 1 = p_reg))
==> ((EL n (SET_EL p_reg 1 z)) = ELn 1,
EL_SET_EL_TAC):;

LIST?_CORRECT

Run time: 49.9s
Intermediate theorems generated: 1467

let LISTa_CORRECT = prove_thm(‘LISTa_CORRECT‘,

w1(1:(swordn) list) b t. (LENGTH 1 = p.reg) ==>

(EL a_reg (update_reg 1 (F,T,T) (b (t:num))

(add (rep: rep_ty) (EL p_regl, wordn rep 1))) =
EL a_reg 1)",

REPEAT GEN_TAC

THEN DISCH_TAC

THEN REWRITE_TAC {update_reg;PAIR_EQ]

THEN

IMP_RES_TAC (REWRITE_RULE (1

(SPECL ["a_reg"; "1:(#uwordn) list™;

“(add (rep: rep.ty)(EL p_reg 1,wordn rep 1))"]

/A

AN

AN

/\

129

INDEP_P_UPDATE))
THEN ASM_REWRITE_TAC []):;

let LISTx_CORRECT = prove_thm(‘LISTx_CORRECT",
"!(1:(*wordn) list) b t. (LENGTH 1 = p_reg) ==>
(EL x_reg (update_reg 1 (F,T,T) (b (t:num))
(add (rep:“rep_ty) (EL p_reg 1, wordn rep 1))) =
EL x_reg 1)",
REPEAT GEN_TAC
THEN DISCH_TAC
THEN REWRITE_TAC [update_reg;PAIR_EQ]
THEN IMP_RES_TAC (REWRITE_RULE []
(SPECL ["x_reg"; "1:(swordn) list";
"(add (rep:-rep_ty)(EL p-reg l,wordn rep 1))"]
INDEP_P_UPDATE))
THEN ASM_REWRITE_TAC []);:

let LISTy_CORRECT = prove_thm(‘LISTy_CORRECT®,
"4(1:(»wordn) list) b t. (LENGTH 1 = p-reg) ==>
(EL y_reg (update_reg 1 (F,T,T) (b (t:num))
(add (rep:-rep_ty) (EL p-reg 1, wordn rep 1))) =
EL y_reg 1)",
REPEAT GEN_TAC
THEN DISCH_TAC
THEN REWRITE_TAC [update_reg;PAIH_EQ]
THEN IMP_RES_TAC (REWRITE_RULE {]
(SPECL ["y_reg"; "1:(swordn) list";
"(add (rep:-rep_ty) (EL p-reg 1l,wordn rep 1))"]
INDEP_P_UPDATE))
THEN ASM_REWRITE_TAC []):;

map (delete_cache o fst) (cached_theories()):;

Use this to generate goals for correct instantiation (implementation) proofs.

**+ This redefines the one in mk_mac_7 sx=»

let MK_INST_CORRECT_GOAL n =
let inst = term_list_el n
(snd(dest_eq(
snd(dest_forall(concl macro_inst_list))))) in
"!(rep: rep.ty) (regs:time->(swordn)list) (m ins din dout:time->swordn)
(ram:time->smemory) (b stop ovl:time->bool) (mar:time->*address)
(res:time->*wordn) (mpc:time->bt7) (reset_e:time->bool).

(REG_LIST_LENGTH rep /\

130

DECODE_M_CORRECTLY_IMP rep) ==>
(Macro_Int_IMPL_IMP rep

(\t. (reg t,m t,ins t,din t,dout t, ram t,b t,stop t,ovl t, mar t,

res t, mpc t))

(\t. reset_e t) “inst)";;

let int_to_term = ((C o curry) mk_const ":num") o string_of_int and

term_to_int = (int_of_string o fst o dest_const);;

let sum_to_term x y = int_to_term (x+y);;

let sumTerm x y
mk_comb (mk_comb (mk_const (' +,
mk_type(‘fun‘, [mk_type(‘nun‘,[]);
mk_type(‘fun',{ mk_type(‘num*‘, [1);
mk_type(‘num‘,[1)1)1)),
mk_const((string_of_int x), mk_type(‘num‘,[]))),

mk_const((string_of_int y), mk_type(‘num‘,{1)));;

let t_plus_termy =
mk_comb (mk_comb (mk_const (‘+,
mk_type(‘fun‘, {mk_type(‘num*‘,[]);
mk_type(‘fun‘,[mk_type(‘num‘,[]);
mk_type(‘num‘,[1)1)1)),
mk_var(‘t‘, mk_type(‘num‘,[1))),

mk_const((string_of_int y), mk_type(‘num‘,[]1)));;

let sumTHM x y =
REWRITE_RULE [
(REWRITE_RULE [ADD_CLAUSES;
SYM_RULE((TOP_DEPTH_CONV nun_CONV) (sum_to_term x y))]
((TOP_DEPTH_CONV num_CONV) (sumTerm x y))}}
(SPECL ["t"; int_to_term x; int_to_term y] (SYM_RULE ADD_ASS0C));;

let T_DIFF_TAC x y =
REWRITE_TAC [SPECL ["t";x;y] (SYM_RULE ADD_ASSOC)]
THEN CONV_TAC (TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC [ADD_CLAUSES];;

set_goal([],"(t43)+4 = t+7");;
e(T_DIFF_TAC "3 "4");;

131

let PLUS_ONE_TAC n =
REWRITE_TAC [(SYM_RULE ADD1); (num_CONV n);ADD_CLAUSES];;

let T2 = prove_thm (‘T2', “!t. (v + 1} + 1 =t + 2", PLUS_ONE_TAC "2")i

let T3 = prove_thm ‘T3¢, "tt. (t +2) + 1 =1 + 3", PLUS_ONE_TAC "3")i

let T4 = prove_thm (‘T4‘, "!'t. (t + 3) + 1 =1 + 4", PLUS_ONE_TAC "4");;

let T5 = prove_thm (‘TS‘, “ft. (1 +4) + 1 =1t + 5", PLUS_ONE_TAC "t)

let T6 = prove_thm (‘T6°, "!lt. (t +5) + 1 =1+ 6", PLUS_ONE_TAC 6");;

let T7 = prove_thm (‘T7¢, "!'t. (t + 6) + 1 =t + 7", PLUS_ONE_TAC "7")i

let T8 = prove_thm (‘T8‘, "!t. (t + 7) + 1 = t + 8", PLUS_DNE_TAC "8")i

let T9 = prove_thm (‘T9‘, "!t. (t + 8) + 1 = t + 9", PLUS_DNE_TAC "g")

let T10 = prove_thm (‘T10‘, "!t. (¢t + 9) + 1 = t + 10", PLUS_ONE_TAC "10");;
let Ti1 = prove_thm (‘T11‘, "!'t. (t + 10) + 1 =t + 11", PLUS_ONE_TAC "11" VI
let T12 = prove_thm (‘T12‘, "!'t. (¢t + 11) + 1 =1 + 127, PLUS_ONE_TAC "12");;
let T13 = prove_thm (‘T13‘, "!t. (t + 12) + 1 =t + 13", PLUS_ONE_TAC "13")5,
let T14 = prove_thm (‘T14*', "'t. (t + 13) + 1 =t + 14", PLUS_ONE_TAC "14");;
let T15 = prove_thm (‘T15*, "'t. (v + 14) + 1 =t + 15", PLUS_ONE_TAC 15")i,
let T16 = prove_thm (‘T16*, "!t. (t + 15) + 1 = t + 16", PLUS_ONE_TAC "16")
let Ti7 = prove_thm (‘T17°¢, “!t. (¢t + 16) + 1 =t + 17", PLUS_ONE_TAC "17");;
let T18 = prove_thm (‘T18‘, “!t. (t + 17) + 1 = t + 18", PLUS_ONE_TAC "18")

let T_THMS =[T2:T2;T3;T4;TS;TG;T7;T8:T9;T10;T11;T12:T13;T14:T15;TIS;T17;T18];;

Define the relationship between selectors op and address and the

constructor join

let op_join_op = mk_thm({], "!fet ad.
(opcode (rep:~rep_ty)
(join rep
(opcode rep(fet),
address rep(ad)))) = opcode rep(fet)");;

let address_join_address = mk_thm([], "'tet ad.
(address (rep: rep_ty)
(join rep
(opcode rep(fet),
address rep(ad)))) = address rep(ad)');;

let DSF_join_op = mk_thm([], "!fet ad.
(DSF (rep: rep_ty)

132

(join rep
(opcode rep(fet),
address rep(ad)))) = DSF rep(fet)");;

let RSF_join_op = mk_thm([], "'fet ad.
(RSF (rep:-"rep_ty)
(join rep
(opcode rep(fet),
address rep(ad)))) = HKSF rep(fet)');;

let address_pad_address = mk_thm([], "'w.
(address (rep:"rep_ty) (pad rep (address rep(w)))) =

address rep(w)");;

let FSF_join_op = mk_thm([], “!fet ad.
(FSF (rep:"rep_ty)
(join rep
(opcode rep(fet),
address rep(ad)))) = FSF rep(fet)");;

NORMAL_SYMB_EXEC takes as arguments a microinstruction to expand

and one of the "T" theorems frow above

should append _TAC to the name'

let NORMAL_SYMB_EXEC n T =
IMP_RES_TAC (el n Micro_Ilnt_Inst_list)
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm. POP_ASSUM(\thmi.
% note that thm thml are not used %
MAP_EVERY ASSUME_TAC (CONJUNCTS (REWRITE_RULE
([PAIR_EQ;T;op_join_op;address_join_address;
DSF_join_op;RSF_join_op;address_pad_address]
¢ (subtract asl{(el 1 asl)])) (el 1 asl))))))
THEN NORMAL_POP_ASSUM_TAC ;;

NEXT_SYMB_EXEC_TAC determines what the next microinstruction
expansion should be based on the mpc (on top of assumption stack).

It then invokes NORMAL_SYMB_EXEC passing one of the T_THMS.

(term_to_int(bt_val_func(snd(dest_eq(snd(dest_thm((el 1 asl)})))))+1)),

133

let mpc_from_thm thm =
(term_to_int(bt_val_func(snd(dest_eq(snd(dest_thm(thm)N

let NEXT_SYMB_EXEC_TAC theTime =
let t = (el theTime T_THMS) in
ASSUM_LIST(\asl. NORMAL_SYMB_EXEC (mpc_from_thu (el 1 asl)+1) t);;

% CASES_NEXT_SYMB_EXEC_TAC may be outdated %

let CASES_NEXT_SYMB_EXEC_TAC theTime theCond =
let t = (el theTime T_THMS) in

ASSUM_LIST(\asl.

IMP_RES_TAC (el (mpc_from_thm (el 1 asl)+1) Micro_Int_Inst_list))

THEN ASM_CASES_TAC theCond

THEN ASSUM_LIST (\asl. POP_ASSUM{(\keep.
POP_ASSUM(\thm. POP_ASSUM(\thm1i.
Y% note that thm thml are not used %
MAP_EVERY ASSUME_TAC ({keep) @ (CONJUNCTS (REWRITE_RULE
([PAIR_EQ;t] € (subtract asl(thm])) thm)))>)))

THEN NORMAL_POP_ASSUM_TAC ;;

The following definitions help remove unneeded theorems from the assertion
list. After using NORMAL_SYMB_EXEC, there are mapy thearems from the

previous step that can be eliminated.

The tactic DELETE_USTEP_TAC expects a number argument and removes all

theorems from the assumption list correspending to that time.

is_at_time_of 2 "foo(t+1):bool = false";;
(is_at_time_of 1 "foo(t+1) = false") = false;:

(is_at_time_of 1 "“foo(t+1)") = true;;

let is_at_time_of utime tok =
if(is_eq tok)
then (let 1 = lhs(tok) in % mar(t+1) %
if(is_comb 1)
then (let r = rand(1) in % (t+1) %
if(is_comb r)
then (let op = rator(r) in
if(op = "+ t")
then (if (rand(r) = int_to_term(utime))

then
if(rator(l) = "mpc") then

134

(print_ibegin 0; print_term tok;print_end(};
print_newline();true)
else true
else false
)
else false
)
else false
)
else false
)
else (if (is_neg tok)
then (let tk = dest_neg(tok) in
if(is_comb tk)
then (let r = rand(tk) in % (t+1) %
if(is_comb r)
then (let op = rator{(r) in
if(op = "+ t")
then (if (rand(r) = int_to_term(utime))
then true
else false
)
else false
)
else lalsw
)
else false
)

else false

) ? false;;

let FIND_ASSUMS f asl = (filter(f o concl) asl);;

let DELETE_USTEP_TAC when =
POP_ASSUM_LIST(\asl. MAP_EVERY ASSUME_TAC (
(rev(subtract asl (FIND_ASSUMS (is_at_time_of when) asl)))));;

This function returns the nth term in a "pair". It vas defined to

help pull out a case split from inside the state (eg valid addressing)

letrec pair_el n p =
if (n = 1) then

if(1s_pair p) then fst(dest_pair(p)) else p

135

else pair_el (n-1) (snd(dest_pair(p)))};;

The following tactic converts an assumption like

["mpc(t + 6) = bt7_ival(6 + (th_val(F,F,F,F,F)))f]
to:

["mpe(t + 6) = F,F,F,F,T,T,F"]

It is a modified version of NORMAL_POP_ASSUM_TAC

(vho picked that tactic name anyway? :-))

let JMPOPC_POP_ASSUM_TAC =
POP_ASSUM (\thm. ASSUME_TAC (

CONV_RULE (ONCE_DEPTH_CONV bt7_ival _CONV) (
CONV_RULE DEC_ADD_CONV (
% DEC_ADD_CONV broken for "0 + 1" ¥
PURE_ONCE_REWRITE_RULE [ADD_CLAUSES] (
CONV_RULE (ONCE_DEPTH_CONV btS_val_CONV) (
REWRITE_RULE [add_bt7] thm))))));;

map (delete_cache o fst) (cached_theories());;

let FETCH_INST_TAC n = 7 set up everything for all praofs? %
let thm = el (n+l1) macro_defn_list 1in ¢
let inst_lemma = EXPAND_LET_RULE thm
and inst = term_list_el n
(snd(dest_eq(
snd(dest_forall(concl macro_inst_list))))) in (
REPEAT GEN_TAC
THEN STRIP_TAC
THEN SUBST_TAC [SPEC inst Macro_Int_IMPL_IMP_LEMMA]
THEN ASM_REWRITE_TAC (inst_lemma;ABS_ENV]))
THEN STRIP_TAC % don't use REPEAT STRIP_TAC! %
THEN STRIP_TAC
THEN STRIP_TAC
THEN 7% specialize the LISTx asumptions but preserve.the assumption order ¥%
POP_ASSUM_LIST(\asl.
ASSUME_TAC (el 5 asl)
THEN ASSUME_TAC (SPEC "(reg t):*wordn list"
(REWRITE_RULE [REG_LIST_LENGTH] (el & asl)))
THEN IMP_RES_TAC LISTa_CORRECT
THEN IMP_RES_TAC LISTx_CORRECT
THEN IMP_RES_TAC LISTy_CORRECT
THEN ASSUME_TAC (el 4 asl) THEN ASSUME_TAC (el 3 asl)
THEN ASSUME_TAC (el 2 asl) THEN ASSUME_TAC (el 1 asl))

136

THEN ASSUM_LIST (\asl. ASSUME_TAC (REWRITE_RULE[(el 2 asl);PAIR_EQ]
(EXPAND_LET_RULE (SPECL
["fetch (rep: rep_ty) (ram (t:num),
address rep (EL p_reg (reg (t:num)))):swordn";
"(b (t:num)):bool"]
(PURE_REWRITE_RULE [DECODE _M_CORRECTLY_IMP] (el 4 asl))}))))

THEN ASSUM_LIST(\asl. ASSUME_TAC (REWRITE_RULE([(el 3 asl);PAIR_EQ] (SPEC

(fst(dest_eq{snd(dest_thm{el 3 asl))))) MacroLevelCycles)))
THEN ASM_REWRITE_TAC[]
% take care of stop case J
THEN ASM_CASES_TAC "(stop (t:num)):bool”
THEN ASSUM_LIST(\asl. REWRITE_TAC [el 1 asl])
THENL [% subgoal 1 (stop t) %
ASSUM_LIST(\asl. IMP_RES_TAC

(SPECL [(snd(dest_eq(snd(dest_thm(el 2 asl)))));"t:num"] stop_thm))

THEN ASSUM_LIST (\asl. MAP_EVERY ASSUME_TAC
(CONJUNCTS (REWRITE_RULE [PAIR_EQ] (el 1 asl))))
THEN ASM_REWRITE_TAC[PAIR_EQ]
;% subgoal 2 "~ stop t %
NORMAL_SYMB_EXEC 1 T2 % T2 here is a placeholder %
THEN NORMAL_SYMB_EXEC 2 T2
THEN COND_CASES_TAC
THENL [Y% subgoal 2.1 “valid_address %
NORMAL_SYMB_EXEC 3 T3
% The processor is now stopped due to an addressing exception
% specialize and rewrite stop_thm show nothing will change %
THEN ASSUM_LIST(\asl. ASSUME_TAC(REWRITE_RULE
{(el 5 asl);(el 43 asl);(el 1 asl)] (SPECL [(int_to_term
((term_to_int (snd(dest_eq(snd(dest_thm .
(REWRITE_RULE [PAIR_EQ] (el 39 asl)))))))-3));
"(t+3) :num"] stop_thm)))
THEN ASSUM_LIST(\asl. (POP_ASSUM(\thm.
(MAP_EVERY ASSUME_TAC (CONJUNCTS (REWRITE_RULE
([PAIR_EQ; (sumTHM 3
((term_to_int(snd(dest_eq(snd(dest_thm
(el 40 asl))))))-3))
] © (subtract asl{(el 1 asl)])) (el 1 asl)) }) 1))
THEN ASM_REWRITE_TAC [PAIR_EQ]
THEN REWRITE_TAC {update_reg; PAIR_EQ;EL_SET_EL]
; % subgoal 2.2 valid_address %
POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE [J thm))
THEN NORMAL_SYMB_EXEC 3 T3
THEN DELETE_USTEP_TAC 1 THEN DELETE_USTEP_TAC 2
13+

137

map (delete_cache o fst) (cached_theories());;

let INDEP_REG_TAC aReg INDEP_THM =
ASSUM_LIST(\asl. REWRITE_TAC
[(REWRITE_RULE [(SPEC "(update_reg(reg (t:num))(F,T,T)
(add rep(EL p_reg(reg t),wordn (rep: rep_ty) 1)))"
(REVRITE_RULE [REG_LIST_LENGTH] (last asl)))]
(SPECL [aReg; "(update_reg(reg (t:num))(F,T,T)
(add rep(EL p_reg(reg t),wordn (rep: rep_ty) 1)))" 1 INDEP_THM))]);;

% |- EL 1 =EL x_reg %
let ELX = AP_TERM "EL:num->({(*wordn)list->=wordn)" (SYM X);:

% |- SET_EL 1 = SET_EL x_reg %
let SET_ELX = AP_TERM "SET_EL:num->((*wordn)list -> (#wordn -> (#*wordn)list))"
(SYM XD ;;

let THREE_TUPLE_CASES_ASSOC = prove_thm(‘'THREE_TUPLE_CASES_ASSOC*,
"'b.
(b =T1T,T,T) \/ (b =F,T, Ty \/ (b =T,F,T) \/ (b=F,F,T)) \V
(b =T, T,F) \/ (b =F,T,F)) \/
(b = T,F,F) \/
(b = F,F,F))
= ((b =F,F,F) \/
(b = F,F,T) \/
(b = F,T,F) \/
(b =F,T,T) \/
(b =T,F,F)\/
(b =T,F,T) \/
®m=T,T,F) \/
b=TT.T) ",
GEN_TAC
THEN ASM_CASES_TAC "(b = F,F,F)"
THENL[ALL_TAC; ASM_CASES_TAC "(b = F,F,T)"
THENL[ALL_TAC; ASM_CASES_TAC "(b = F,T,F)"
THENL[ALL_TAC; ASM_CASES_TAC "(b = F,T,T)"
THENL[ALL_TAC; ASM_CASES_TAC "(b = T,F,F)"
THENL([ALL_TAC; ASM_CASES_TAC "(b = T,F,T)"
THENL[ALL_TAC; ASM_CASES_TAC "(b = T,T,F)"
THENL{ ALL_TAC; ASM_CASES_TAC "(b = T,T,T)"
1111111
THEN ASM_REWRITE_TAC [OR_CLAUSES;PAIR_EQ]

138

Yis

let THREE_TUPLE_VALUE_ASSOC_LEMMA = prove_thm('THREE_TUPLE_VALUE_ASSOC_LEMMA®,
"5, (b = F,F,F) \/
(b =F,F,T) \/
(b =F,T,F) \/
(b =F,T,T) \/
(b =T,F,F) \/
(b=T,F,T)\/
b =T,T,F) \/
(b =T,T,T",
GEN_TAC
THEN SUBST_TAC [SYM (SPEC "b" THREE_TUPLE_CASES_ASSOC)]
THEN REWRITE_TAC[(SPEC "b" THREE_TUPLE_VALUE_LEMMA)]);;

let THREE_TUPLE_IMP1 = prove_thm(‘THREE_TUPLE_IMP1°,
"tb. ((b = F,F,F) \/
(b = F,F,T) \/
(b = F,T,F)
==> “((b = F,T,T) \/
(b = T,F,F) \/
(b = T,F,T) \/
(b =T,T,F) \/
(b =T, T,TH",
GEN_TAC
THEN DISCH_TAC
THEN POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THEN (POP_ASSUM(\thm. DISJ_CASES_TAC thm) ORELSE ALL_TAC)
THEN ASM_REWRITE_TAC [PAIR_EQ)]
)i

let RSF_CASES = SPEC
"(RSF (rep: rep_ty)(fetch rep(ram t,address rep(EL p_reg(reg t))))}"

TWO_TUPLE_VALUE_LEMMA;;

let DSF_CASES = SPEC
"(DSF (rep: rep.ty)(fetch rep(ram t,address rep(EL p_reg(reg t))})))"

THREE_TUPLE_VALUE_ASSOC_LEMMA;;

let AXY_DSF_CASES =
"~ ((DSF (rep:-rep_ty)(fetch rep(ram t,address rep(EL p_reg(reg t)))) = F,F,F)

\/ (DSF rep(fetch rep(ram t,address rep(EL p_reg(reg t)))) = F,F,T)
\/ (DSF rep(fetch rep(ram t,address rep(EL p_reg(reg t)))) = F,T,F))";;

let AXY_IMP1 = (SPEC
“(DSF (rep:"rep_ty)(fetch rep(ram t,address rep(EL p_reg(reg t)))))"

THREE_TUPLE_IMP1);;

139

let RSF_CASES_TAC =
DISJ_CASES_TAC RSF_CASES Y% cond on RSF - 4 subgoals proved %
THEN POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THEN % rewrite (reg t+10) with the conditions and asl %
ASSUM_LIST(\asl. let regsVal = (el 14 asl) in ASSUME_TAC(
REWRITE_RULE (PAIR_EQ;bt3_val;(SYM A);(SYM Y);(SYM P);ELX;SET_ELX]
(ONCE_REWRITE_RULE[update_reg]
(REWRITE_RULE ((subtract asl{regsVal)) @
[bt2_val;bt3_val; (SYM A); (SYM Y); (SYM P)]) regsVal))))
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL];;

let ELP_SET_ELP = TAC_PROOF (([], "!(newVal:swordn) b.
(EL p_reg (update_reg (reg (t:num)) (F,T,T) b newVal)) = newVal"),
REPEAT GEN_TAC
THEN REWRITE_TAC[update_reg;bt3_val;(SYM P);EL_SET_EL;PAIR_EQ]);;

let EL_COND_THM = TAC_PRDOF (([], "!(regs:swordn list) sel.
(EL((sel
(sel = F,T) => x_reg |

F,F) => a_reg |

(sel = T,F) => y_reg |
p.reg) regs) =
((sel = F,F) => EL a_reg regs |
(sel = F,T) => EL x_reg regs |
(sel = T,F) => EL y_reg regs |
EL p_reg regs }"),
GEN_TAC THEN GEN_TAC
THEN COND_CASES_TAC
THEN REWRITE_TAC []
THEN COND_CASES_TAC
THEN REWRITE_TAC []
THEN COND_CASES_TAC
THEN REWRITE_TAC (]
)i

let SPEC1_EL_COND_THM =
SPECL ["(update_reg((reg (t:num)):*wordn list)(F,T,T)(b t)
(add (rep: rep_ty){EL p_reg(reg t),wordn rep 1)))}";
"(RSF (rep: rep_ty)(fetch rep(ram (t:num),
address rep(EL p_reg(reg t)))))"]
EL_COND_THM;;

let bt2_reg_def = REWRITE_RULE [(SYM A);(SYM X);(SYM Y);(SYM P)] bt2_val_def;;

let INDEP_A_UPDATE!1 = prove_thm(‘INDEP_A_UPDATE1',

140

"!(1l:*wordn list) (n:num) (z:%wordn).
(((n = x_reg) \/ (n =y_reg) \/ (n =p_reg)) /\
(LENGTH 1 = p_reg))
==> ((EL n (SET_EL a_reg 1 z)) = EL n 1)",
EL_SET_EL_TAC);;

let INDEP_X_UPDATE1 = prove_thm(‘INDEP_X_UPDATE1‘,
"!(1l:swordn list) (n:num) (z:=*wordn).
(((n = a_reg) \/ (n = y_reg) \/ (n = p_reg)) /\
(LENGTH 1 = p_reg))
==> ((EL n (SET_EL x_reg 1 z)) = EL n 1)",
EL_SET_EL_TAC);;

let INDEP_Y_UPDATE1 = prove_thm(‘INDEP_Y_UPDATE1‘,
“!(1l:#vordn list) (n:num) (z:*wordn).
(((n=a_reg) \/ (n=x_reg) \/ (n = p_reg)) /\
(LENGTH 1 = p_reg))
==> ((EL n (SET_EL y_reg 1 2z)) = EL n 1)",
EL_SET_EL_TAC);;

let INDEPENDENCE_TAC UPDATE_THM = Y% 325.6 %
ASSUM_LIST(\asl. ASSUME_TAC(

(REWRITE_RULE [(SPEC "(update_reg(reg (t:num))(F,T,T)(b t)
(add rep(EL p_reg(reg t),vordn (rep: rep_ty) 1)))"
(REWRITE_RULE [REG_LIST_LENGTH] (last asl)))]

(SPECL ["(update_reg(reg (t:num))(F,T,T)(b t)

(add rep(EL p_reg(reg t),wordn (rep:“rep_ty) 1)))"] UPDATE_THM })))
THEN POP_ASSUM(\thm. REWRITE_TAC [ELP_SET_ELP;
(REWRITE_RULE (] (SPEC "a_reg" thm));
(REWRITE_RULE([] (SPEC "x_reg'" thm));
(REWRITE_RULE[] (SPEC "y_reg" thm));
(REWRITE_RULE[] (SPEC "p_reg" thm))]):;

let EXPAND_REG_TAC = ¥ 235.0s ¥
ASSUM_LIST(\asl. let regsVal = (el 13 asl) in ASSUME_TAC(
REWRITE_RULE [PAIR_EQ;bt3_val; (SYM A); (SYM Y); (SYM P);ELX;SET_ELX;
bt2_reg_def;SPEC1_EL_COND_THM;ELP_SET_ELP)
(ONCE_HEHRITE_RULE[update_reg]
(REWRITE_RULE ((subtract asl[regsvall) ¢
(bt2_val;bt3_val;(SYM A);(SYM Y);(SYM P)]) regsVal))));;

let EXPAND_B_TAC = % 235.0s ¥%
ASSUM_LIST(\asl. let bVal = (el 8 asl) in ASSUME_TAC(
REWRITE_RULE [PAIR_EQ;bt3_val; (SYM A); (SYM Y); (SYM P);ELX;SET_ELX;
bt2_reg_def ;EL_COND_THM;ELP_SET_ELP]

141

(REWRITE_RULE ((subtract asl(bvall) ¢
[bt2_val;bt3_val; (SYM A); (SYM Y);(SYM P)]) bVal)));;

let EXPAND_COND_TAC thmNum =
ASSUM_LIST(\asl. let thm = (el thmNum asl) in ASSUME_TAC(

REWRITE_RULE [PAIR_EQ;bt3_val; (SYM A): (SYM Y);(SYM P) ;ELX;SET_ELX;
bt2_reg_def:EL_COND_THM;ELP_SET_ELP]

(REWRITE_RULE ((subtract asl(thm]) @
[bt2_val;bt3_val; (SYM A); (SYM Y);(SYM P)}) thm)))i

let FETCH_OPERAND_CASES_TAC =
NORMAL_SYMB_EXEC 4 T4 THEN DELETE_USTEP_TAC 3
THEN NORMAL_SYMB_EXEC S TS THEN DELETE_USTEP_TAC 4
THEN REWRITE_TAC [load_m_expanded; urite_reg_expanded; load_r_expanded;
write_preg_expanded]

% construct MSF cases %

THEN ASSUM_LIST(\asl. ASSUME_TAC (SPEC (snd(dest_comb(snd(dest_comb(snd(
dest_comb(rhs(snd{dest_thm((el 1 as))IMNNM
TWO_TUPLE_VALUE_LEMMA))

THEN POP_ASSUM(\thm. DISJ_CASES_TAC thm)

THEN POP_ASSUM(\thm. DISJ_CASES_TAC thm);;

142

let FIND_ASSUM f asl = hd(filter(f o concl) asl):;

let MSF_CASE_MPC_REWRITE_TAC =
ASSUM_LIST(\asl. ASSUME_TAC(REWRITE_RULE [(el 1 asl);bt2_val)
(el 2 asl)))

THEN POP_ASSUM (\thm. ASSUME_TAC (
CONV_RULE (ONCE_DEPTH_CONV bt7_ival_CONV) (
CONV_RULE DEC_ADD_CONV (
% DEC_ADD_CONV broken for "0 + 1" %
PURE_ONCE_REWRITE_RULE [ADD_CLAUSES] (thm)))));;

let MSF_FT_FF_FETCH_TAC =

ASSUM_LIST(\asl. REWRITE_TAC[(el 1 asl);PAIR_EQ]) ¥% 2567.8s ¥%
THEN MSF_CASE_MPC_REWRITE_TAC

THEN NEXT_SYMB_EXEC_TAC 6 THEN DELETE_USTEP_TAC
THEN NEXT_SYMB_EXEC_TAC 7 THEN DELETE_USTEP_TAC
THEN NEXT_SYMB_EXEC_TAC 8 THEN DELETE_USTEP_TAC
THEN NEXT_SYMB_EXEC_TAC 9 THEN DELETE_USTEP_TAC
THEN NEXT_SYMB_EXEC_TAC 10 THEN DELETE_USTEP_TAC
THEN NEXT_SYMB_EXEC_TAC 11 THEN DELETE_USTEP_TAC
THEN NEXT_SYMB_EXEC_TAC 12

THEN JMPOPC_POP_ASSUM_TAC THEN DELETE_USTEP_TAC 11;;

_- W W ~N O W»n

let SYMB_EXEC_ASSUM_TAC mpcAsm theTimeThm =
ASSUM_LIST(\asl.
IMP_RES_TAC (el (mpc_from_thm (el mpcAsm asl)+1) Micro_Int_Inst_list))
THEN POP_ASSUM(\thm. POP_ASSUM(\thm1. ASSUM_LIST(\asl. ASSUME_TAC(
(REWRITE_RULE ([theTimeThm] ¢ asl) thm)))));;

let SYMB_EXEC_ASSUM_TAC1 mpcAsm theTimeThm =
ASSUM_LIST(\asl.
IMP_RES_TAC (el (mpc_from_thm (el mpcAsm asl)+1) Micro_Int_Inst_list))
THEN POP_ASSUM(\thm. POP_ASSUM(\thm1. ASSUM_LIST(\asl.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE(
[PAIR_EQ;theTimeThn;DSF_join_op;op_join_op;address_join_address;
address_pad_address] @ asl) thm))))));;

% The processor is nov stopped due to an addressing exception Y
% specialize and rewrite stop_thm show nothing will change %
let EXTEND_STOP_TAC when M_I_thm =
ASSUM_LIST(\asl.
let curTime = (term_to_int
(rand(rand(fst(dest_eq(snd(dest_thm(el 1 asl)))})))) in

let endTime =
(term_to_int (snd(dest_eq(snd(dest_thm (el when asl)))))) in

ASSUME_TAC(REWRITE_RULE [(el 1 asl); (el 5 asl) ; (el M_I_thm asl);

(sumTHM curTime (endTime-curTime))]

143

(SPECL [(int_to_term (endTime - curTime)); (t_plus_term curTime)]

stop_thm)))

THEN POP_ASSUM(\thm. REWRITE_TAC [(REWRITE_RULE [PAIR_EQ] thm)])
THEN ASM_REWRITE_TAC (]
THEN REWRITE_TAC [ELP_SET_ELP];;

let GOOD_DEST_TAC =
ASSUM_LIST(\asl. DISJ_CASES_TAC (el 14 asl))
THENL

[EXPAND_REG_TAC
THEN EXPAND_B_TAC
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL;DSF_join_op;op_join_op;

address_join_address; address_pad_address]

THEN INDEPENDENCE_TAC INDEP_A_UPDATE1

POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THEN EXPAND_REG_TAC
THEN EXPAND_B_TAC
THEN ASM_REWRITE_TAC (PAIR_EQ;EL_SET_EL;DSF_join_op;op_join_op;
address_join_address; address_pad_address}
THENL
{ INDEPENDENCE_TAC INDEP_X_UPDATEI;
INDEPENDENCE _TAC INDEP_Y_UPDATE!

1

let MSF_TF_FETCH_TAC =
ASSUM_LIST(\asl. REWRITE_TAC[(el 1 asl);PAIR_EQ]) % 2567.8s %
THEN MSF_CASE_MPC_REWRITE_TAC
THEN NEXT_SYMB_EXEC_TAC 6 THEN DELETE_USTEP_TAC 5
THEN NEXT_SYMB_EXEC_TAC 7 THEN DELETE_USTEP_TAC 6
THEN NEXT_SYMB_EXEC_TAC 8 THEN DELETE_USTEP_TAC 7
THEN SYMB_EXEC_ASSUM_TAC 1 T9
% case split based on valid address

THEN ASSUM_LIST (\asl. ASM_CASES_TAC { (fst(dest_cond

THENL
[%------=—mmmmmm=- “valid addresg----=~=---- %

POP_ASSUM{(\theCase. POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC (

144

(pair_el 9 (snd(dest_eq(snd(dest_thm(el 1 asl)))))))

([theCase] © (CONJUNCTS
(REWRITE_RULE [PAIR_EQ; theCase] thm))))))

THEN DELETE_USTEP_TAC 8
THEN ASSUM_LIST(\asl. ASSUME_TAC % (el 13 asl) is valid_address ...

(REWRITE_RULE [PAIR_EQ;update_reg] (el 13 asl)))

THEN ASM_REWRITE_TAC [PAIH_EQ]

%
%

The processor is now stopped due to an addressing exception %

specialize and rewrite stop_thm show nothing vill change %

%

THEN ASSUM_LIST(\asl.
let MLC tok = (rator(lhs(tok))) = "MacrolLevelCycles" ? false in
let endTimeThm = {(FIND_ASSUM MLC asl) in
let curTime = (term_to_int
(rand(rand(fst(dest_eq(snd(dest_thm(el 2 asl)))))))) in
let endTime =
(term_to_int (snd(dest_eq(snd(dest_thm {endTimeThm)))))) in
ASSUME_TAC (REWRITE_RULE (asl@{ (sumTHM curTime (endTime-curTime))])
(SPECL [(int_to_term {(endTime - curTime)); (t_plus_term curTime)]
stop_thm)))
THEN POP_ASSUM(\thm. REWRITE_TAC [(REWRITE_RULE [PAIR_EQ] thm)])
THEN ASM_REWRITE_TAC (]
THEN REWRITE_TAC {ELP_SET_ELP]
i % mmmmmmmmommmm e now the valid address case----—----="<-- %
POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE [J thm))
THEN POP_ASSUM(\theCase. POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC (
([theCase] © (CONJUNCTS(REURITE_RULE[PAIH_EQ;theCase]thm) 1))
THEN ASSUM_LIST(\asl. REWRITE_TAC[(el 13 asl)])
THEN NORMAL_POP_ASSUM_TAC THEN DELETE_USTEP_TAC 8
THEN NEXT_SYMB_EXEC_TAC 10 THEN DELETE_USTEP_TAC 9
THEN NEXT_SYMB_EXEC_TAC 11 THEN DELETE_USTEP_TAC 10
THEN NEXT_SYMB_EXEC_TAC 12
THEN JMPOPC_POP_ASSUM_TAC THEN DELETE_USTEP_TAC 11

1is

let MSF_TT_FETCH_TAC =
ASSUM_LIST(\asl. REWRITE_TAC[(el 1 asl);PAIR_EQ]) % 2567.8s %
THEN MSF_CASE_MPC_REWRITE_TAC
THEN NEXT_SYMB_EXEC_TAC 6 THEN DELETE_USTEP_TAC 5
THEN NEXT_SYMB_EXEC_TAC 7 THEN DELETE_USTEP_TAC 6
THEN SYMB_EXEC_ASSUM_TAC 1 T8
% case split based on valid address %
THEN ASSUM_LIST (\asl. ASM_CASES_TAC ((fst(dest_cond
(pair_el 9 (snd(dest_eg(snd(dest_thm(el 1 asl)))))))y))

(fommmmmmmm o “valid address---------- %
POP_ASSUM(\theCase. POP_ASSUM(\thn. MAP_EVERY ASSUME_TAC (
([theCase] @ (CONJUNCTS
(REWRITE_RULE [PAIR_EQ; theCase] thm) 1))
THEN DELETE_USTEP_TAC 7
THEN ASSUM_LIST(\asl. ASSUME_TAC % (el 13 asl) is valid_address ... %
(REWRITE_RULE [PAIR_EQ;update_reg] (el 13 asl)))
THEN ASM_REWRITE_TA¢ [PAIR_EQ]
% The processor is now stopped due to an addressing exception %

% specialize and rewrite stop_thw show nothing will change %

145

THEN ASSUM_LIST(\asl.
let MLC tok = (rator(lhs(tok))) = "MacroLevelCycles” ? false in
let endTimeThm = (FIND_ASSUM MLC asl) in
let curTime = (term_to_int
(rand(rand(fst(dest_eq(snd(dest_thm(el 2 as1))}))))) in
let endTime =
(term_to_int (snd(dest_eq(snd(dest_thm (endTimeThm)))))) in
ASSUME_TAC (REWRITE_RULE (asl@[(sumTHM curTime (endTime-curTime))])
(SPECL [(int_to_term (endTime - curTime)); (t_plus_term curTime)]
stop_thm)))
THEN POP_ASSUM(\thm. REWRITE_TAC [(REWRITE_RULE [PAIR_EQ] thm)])
THEN ASM_REWRITE_TAC [)
THEN REWRITE_TAC [ELP_SET_ELP)
P e now the valid address case~-------=-—-- %
POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE [] thm))
THEN POP_ASSUM(\theCase. POP_ASSUM(\thm. MAP_EVERY ASSUME_TAC (
([theCase] ¢ (CONJUNCTS(REURITE_RULE[PAIR_EQ;theCase]thn))
THEN ASSUM_LIST(\asl. REWRITE_TAC[(el 13 asl)])
THEN NORMAL_POP_ASSUM_TAC THEN DELETE_USTEP_TAC 7
THEN NEXT_SYMB_EXEC_TAC 9 THEN DELETE_USTEP_TAC 8
THEN NEXT_SYMB_EXEC_TAC 10 THEN DELETE_USTEP_TAC 9
THEN NEXT_SYMB_EXEC_TAC 11 THEN DELETE_USTEP_TAC 10
THEN NEXT_SYMB_EXEC_TAC 12
THEN JMPOPC_POP_ASSUM_TAC THEN DELETE_USTEP_TAC 11
1

146

loadf ‘digit’;;
loadf ‘decimal’;;
loadf ‘tuple‘;;
loadf ‘abstract‘;;

load_parent ‘mac_I‘;;

map nev_parent [‘aux_def'; ‘micro_def‘;‘regs_def‘;

‘aux_thms'; ‘time_abs‘; ‘gen_I‘];;

let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;
let ABS_ENV = definition ‘macro_def' ‘ABS_ENV';;
let Opcode = definition ‘macro_def‘ ‘Opcode‘;;

let Opc_Val = definition ‘macro_def' ‘Opc_Val‘;;

let Macro_Int_IMPL_IMP = theorem ‘mac_I‘ ‘Macro_Int_IMPL_IMP‘;;

let Micro_state_to_Macro_state = definition ‘mac_I*

‘Micro_state_to_Macro_state';;

let macro_inst_list = definition ‘macro_def’ ‘macro_inst_list‘;;

let GetMPC = definition ‘micro_def' ‘GetMPC';;

let add_bt7 = definition ‘micro_def‘ ‘add_bt7';;

let Next = definition ‘time_abs' ‘'Next';;

let Micro_I = theorem ‘micro_aux' ‘Micro_I‘;;

let MacrolevelCycles = definition ‘mac_I‘' ‘MacroLevelCycles‘;;

let I_rep_ty = abstract_type ‘gen_I‘ ‘Impl‘;;

let macro_state = ":(swordn#*wordn#*wordn#syordn#bool#bool#*swordn#*memory)";;
% a x y p b stop ir ram %
let macro_env = ":(bool)";;

let micro_state = ": (((*wordn)list)#*vordn#*wordn#
*wordn¥«vordn#+*memory#bool#bool#bool#*address#swordntbt7)";;

let micro_env = ":(bool)";;

let load_macro_inst = (\x. definition ‘macro_def‘ x);;

let macro_defn_list = map load_macro_inst
(‘NOOP_M‘; ‘SHR‘; 'SHRB‘; ‘SHLB'; 'SHL';
‘CMP‘; ‘WRITEM‘; *WRITEIO'; ‘NEG‘; ‘CALL‘;
‘READID'; 'READM‘; ‘ADDB‘; ‘ADDS‘'; ‘'SUBB‘;

147

‘SUBO*; ‘XOR‘; ‘AND*; ‘NOR‘; ‘ANDMBAR';.
‘NOOP_M‘; ‘NOOP_M‘; ‘NOODP_M‘; ‘NOOP_M‘; 'NOOP_M‘;
‘NCOP_M‘; ‘NOOP_M‘; ‘NOOP_M‘; *NOOP_M'; ‘NOOP_M‘;
‘NOOP_M'; ‘NOOP_M‘1;;

let load_micro_inst = (\x. theorem ‘micro_def' x);;

let Micro_state_to_Macro_state = definition '‘mac_I' ‘Micro_state_to_Macro_state‘;;

L’
O m e e m oo
I need some theorems about SUM not provided in the theory
__ ‘/'
let sum_axiom =
BETA_RULE (
REWRITE_RULE [o_DEF] (
CONV_RULE (TOP_DEPTH_CONV FUN_EQ_CONV) sum_Axiom));;
’/' __
Some ML function for the inference rules that follow.
__ '/.

let last 1 = (el (length 1) 1);;

letrec term_list_eln 1l = (
let tm_hd x = rand(fst(dest_comb x)) and
tm_tl x = snd(dest_comb x) in
if (n = 0) then tm_hd 1 else
term_list_el (n-1) (tm_tl 1)) ?
failvith ‘term_list_el’;;

This is insecure for right now. If anyone is seriously concerned

that this isn’t right, I’1ll do it over.

__ Y
let EL_CONV tm = (

let ((c¢c,n),1) = ((dest_comb#I)o dest_comb) tm in

let n_int = term_to_int n in

mk_thm([],""tm = “(term_list_el n_int 1)")) 7

failwith ‘EL_CONV';;
Ymmmmmmmmmmmm e e e e ;e mmmm e e m e mm—e—— e m——— e e ———— o
EL_CONV "EL 3 [0;1;2;3;4;5]";;
__ Y
Ymm == e e e e

Some other nice conversions

__ v

148

let is_SND_term t =
if is_comb t then
fst(dest_const(fst(strip_comb t))) = ‘SND*

else
false;;

let SND_CONV t =
if is_SND_term t then
let op,pr = dest_comb t in
let op,[t1;t2] = strip_comb pr in
SPECL [t1;t2] (
INST_TYPE [((type_of t1),":%");
((type_of t2),":#%")] SND)

else
failwith ‘SND_CONV‘;;:

let ADD_ASSOC_CONV t =
let op1l,[t1;t2} = strip_comb t
in
let op2,[t3;t4]

strip_comb t2
in

if opl = "$+" & op2 = "$+"
then SPECL[t1;t3;t4]ADD_ASSOC

else fail;;

INV_ADD_ASSOC_CONV "(a+b)+c" =--> |- (a+bl+c = a+(b+c)

let INV_ADD_ASSOC = (GEN_ALL o SYM o SPEC_ALL) ADD_ASSOC; ;

let INV_ADD_ASSOC_CONV t =
let opt,[t1;12] = strip_comb t
in
let op2,{t3;t4] = strip_comb t1
in
if opl = "$+" & op2 = "$+"
then SPECL[t3;t4;t2] INV_ADD_ASSOC

else fail;;

let inv_num_CONV n = (
let x,y = dest_comb n in

let y_inc = int_to_term ((term_to_int y) + 1) in
if not(x = "SUC") then fail else
SYM_RULE (num_CONV y_inc))

7 failwith ‘inv_num_CONV';;

149

let instructions = map load_micro_inst
[‘FETCH_ul® ; ‘FETCH_u2‘ ; ‘FETCH_u3‘ ; ‘FETCH_ué4‘
“JMP_reqm‘ ; ‘JMP_opc‘ ; ‘NOOP‘ ; ‘SHRS_ul® ;

‘SHRB_ul® ; ‘SHLB_ul‘ ; ‘AXY_WRITE' ; ‘SHLS_ul‘;
‘NG_OVL® ; ‘NOOP‘ s “AXY_WRITE® ; ‘SHRS_u2®
‘NOOP* : ‘AXY_WRITE® ; ‘SHRB_u2‘ ; ‘NOOP‘ ;
‘AXY_WRITE® ; ‘SHLB_u2‘ ; ‘NOOP® ; ‘MFO_ul® ;
‘MF1_ul‘ ;

‘MF2_ul‘ ; ‘MF3_ul‘ ; ‘MF3_u2‘ ; ‘FETCH_u3‘ ;
‘MF3_ud‘ ; ‘MF3_u5‘ ; ‘MF3_u6wi‘ ; ‘MF3_ulwd‘ ;
‘MF3_ué' ; ‘MF3_ud‘ ; ‘MF3_u5w3‘ ; ‘MF3_ué‘ ;
‘MF3_ul‘ ; ‘MF2_u3‘ ; ‘FETCH_u3‘ ; ‘MF3_u4‘ ;
‘MF3_u5°¢ ; ‘MF3_ué‘ ; ‘COMPARE_ul‘ ; ‘WRITEMEM_ ul® ;
‘WRITEIO_ul‘ ; ‘NEG_ul‘ ; ‘CALL_ut‘ ; ‘READIO_ul’
‘READMEM_ul‘ ; ‘ADDB_ul‘ ; ‘ADDS_ul‘ ; ‘SUBB_ul‘ ;
‘SUBS_ul‘ ; ‘XOR_ui‘ ; ‘AND_ul‘ ; ‘NOR_ul‘ ;
“ANDMBAR_ul‘ ; ‘NOOP‘ ; ‘COMPARE_u2‘ ; ‘NOOP‘ ;
‘WRITEMEM_u2‘ ; ‘NDOP‘ ; ‘WRITEIO_u2‘ ; ‘NODP* ;
“AXY_WRITE® ; ‘NEGATE_u2‘ ; ‘NOQP® ; ‘CALL_ u2‘ ;
CCALL_u3¢ ; ‘FETCH_u3‘ ; ‘NOQP‘ ; ‘READIO_u2‘ ;
‘MF3_uS‘ ; ‘READIO_u4‘ ; ‘NOOP¢ ; ‘READIO_u4‘ ;
“CK_VALID_PC‘ ; ‘NOOP‘ ; ‘ADDB_u2‘ ; ‘NOOP® ;
CADDS_u2‘ ; ‘CK_VALID_PC‘; ‘NO_OVL‘; °‘NOOP® ;
‘SUBB_u2‘ ;

‘NOOP‘ ; ‘SUBS_u2‘ ; ‘CK_VALID_PC‘ ; ‘NO_OVL® ;
‘NOOP‘ ;

“XOR_u2‘¢ ; ‘NOOP‘ ; °AND_u2‘ ; ‘NOOP‘ ;

‘NOR_u2‘ ; ‘NOOP‘ ; ‘wait_4‘ ; ‘wait_3°¢

‘gait_2°¢ ; ‘wait_1°¢ ; ‘MF3_ué‘ ; ‘NOOP ¢ ;

‘NOOP¢ ; ‘NDOP‘ ; ‘NOOP‘ ; ‘NOOP‘ ;

‘NOOP‘ ; ‘NOOP‘ ; ‘NODP‘ ; ‘NOOP®

‘NOOP® ; °NOOP‘ ; ‘NOOP‘ ; ‘NOOP‘ ;

‘NGOP*¢ ; ‘NOOP¢ ; ‘NOOP‘ ; ‘NOOP‘ ;

‘NOOP‘ ; ‘NOOP¢ ; ‘NOOP‘ ; °‘NOOP‘ ;

‘NOOP* ; ‘NOOP‘ ; ‘NOOP‘ ; ‘NOOP® ;

‘NOOP* J;;

let micro_inst_list = definition ‘micro_def‘ ‘micro_inst_list‘;;

let FETCH_ADDR = "(F,F,F,F,F,F,F)":;

let OFFSET = "4";;

Using MK_Micro_Int_Inst_LEMMA, we can prove a lemma of the form

|- Micro_Int
rep

(\t. (reg t,psw t,pc t,mem t,ivec t,ir t,mar t,mbr t,mpc t))

(\t. (int_e t,reset_e t)) ==

(e,
(mpc t

F,F,T,F,T,T) ==>
(reg(t + 1) ,psw(t + 1),pc(t + 1),mem(t + 1),ivec(t + 1),ir(t + 1),
mar(t + 1),mbr(t + 1),mpc(t + 1) =

ST_u1l
rep

(reg t,psv t,pc t,mem t,ivec t,ir t,mar t,mbr t,F,F,T,F,T,T)

(int_e t,reset_e t)))

for every microinstruction, by simply giving its position in the
list. Mapping the inference rule onto a list of integers from 0
to 127 yields a list of lemmas for each micro instruction. The

entire process (exclusive of autoloading time) takes < 700 sec.

let Micro_Int_SPEC =
PURE__ONCE_REWRITE_RULE [micro_inst_list;GetMPC] (
BETA_RULE (
SPECL ["rep: rep_ty";
“(\t. (reg t,m t, ins t, din t, dout t, ramt, bt, stopt, ovl t,
mar t, res t, mpc t)):time->"micro_state';

"(\t. (reset_e t)):time->"micro_env"]} Micro_I));;

let MK_Micro_Int_Inst_LEMMA inst =

let tp = mk_n_tuple_from_int 7 inst in
let mpc_term = "mpc t = “tp" in
DISCH_ALL (
GEN "t" (
DISCH mpc_term (
SUBS [SPECL ["rep:-rep_ty";

"reg t:(*wordn)list";

"m t:xwordn";

"ins t:swordn";

"din t:*wordn";

"dout t:swordn";

"ram t:*memory";

"b t:bool";

"stop t:bool";
"ovl t:bool";
“mar t:*address'”;
"res t:*wordn”;
tp;
"reset_e t:bool"] (el (inst+1) instructions)] (
CONV_RULE (DEPTH_CONV SND_CONV) (
CONV_RULE (ONCE_DEPTH_CONV EL_CONV) (
SUBS [bt7_val_CONV "bt7_val ~tp"] (
SUBS [ASSUME mpc_term] (
SPEC_ALL (
SUBS [Micro_Int_SPEC] (
ASSUME
"Micro_I (rep: rep_ty)
(\t. reg t,m t, ins t, din t, dout t, ram t, bt, stopt, ovlt,
mar t, res t, mpc t)
(\t. reset_e t)™)))))NN);;

let mk_num_list n =
letrec mk_num_list_aux n m =
if n = m then [m] else
(n . (mk_num_list_aux (n+1) m)) in

pk_num_list_aux O n;;

%
MODIFY FOR A TEST
let Micro_Int_Inst_list = map MK_Micro_Int_Inst_LEMMA (mk_num_list 32);;

%
let Micro_Int_Inst_list = map MK_Micro_Int_Inst_LEMMA (mk_num_list 127);;
%

correct up to here

%

let NORMAL_POP_ASSUM_TAC =
POP_ASSUM (\thm. ASSUME_TAC (

CONV_RULE (ONCE_DEPTH_CONV bt7_ival _CONV) (
CONV_RULE DEC_ADD_CONV (
% DEC_ADD_CONV broken for "0 + 1" %
PURE_ONCE_REWRITE_RULE {ADD_CLAUSES] (
CONV_RULE (ONCE_DEPTH_CONV bt7_val_CONV) (
REWRITE_RULE [add_bt7) thm)))))) ;s

152

let RANGE_LEMMA = TAC_PROOF

a3,
"1t1 t2 (mpc:time->bt7) x .
(P, t1 < t7 /N t’ < t2 ==> “(mpc t’ = x)) /A

“(mpc t2 = x) ==>
(It?. t1 <t /N t2 < (22 + 1) ==> “(mpc t’> = x))I"),
REPEAT STRIP_TAC
THEN ASSUM_LIST (\asl. ASSUME_TAC (
SPEC "t’:time" (el 5 asl)))
THEN ASSUM_LIST (\asl. STRIP_ASSUME_TAC (
REWRITE_RULE [SYM_RULE ADD1;LESS_THM] (el 3 asl)))
THENL [
ASSUM_LIST (\asl. ASSUME_TAC (
REWRITE_RULE [el 1 asl] (el 3 asl)))
ALL_TAC

]
THEN RES_TAC

)i

let LESS_SQUEEZE_LEMMA =
let LESS_EQ_SUC =
SYM_RULE (
PURE_ONCE_REWRITE_RULE [DISJ_SYM] LESS_THM) in
PURE_ONCE_REWRITE_RULE [ADD1] (
PURE_ONCE_REWRITE_RULE [LESS_EQ_SUC] (
PURE_ONCE_REWRITE_RULE [LESS_OR_EQ] LESS_EQ_ANTISYM));;

let Macro_Int_IMPL_IMP_LEMMA =
BETA_RULE (
REWRITE_RULE [Opcode;Opc_Val; GetMPC; Micro_state_to_Macro_state;Next] (
BETA_RULE (
SPECL [“rep: rep_ty";
“"(\t. (reg t,m t,ins t,din t,dout t, ram t,b t,stop t,ovl t, mar t, res t, mpc t))
:time->"micro_state";

"(\t. (reset_e t)):time->"micro_env"] Macro_Int_IMPL_IMP)));;

let (INST_LOOP_TAC tm_init):tactic =
let is_begin thm =
snd(dest_eq thm) = FETCH_ADDR in
let tuple_val thm =
term_to_int(bt_val_func(snd(dest_eq thm))) in
letrec INST_LOOP_TAC_AUX tm ((asl,w):goal) =
let INST_TAC n =
IMP_RES_TAC (el n Micro_Int_Inst_list) THEN

153

ASSUM_LIST (\x. MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE [PAIR_EQ] (el 1 x)))) in
let n = (tuple_val (el 1 asl)) + 1 in
let gl,p = INST_.TAC n (asl,w) in
let (asl’,w’) = (hd gl) in
let gll,pl = split (
if (is_begin (el 1 asl’)) then
map (EXISTS_TAC tm) gl else
map (INST_LOOP_TAC_AUX "(“tm)+1") gl) in
(flat gll,(p o mapshape(map length gll)pl)) in
INST_LOOP_TAC_AUX "(“tm_init + 1)";;

let DECODE_M_CORRECTLY_IMP = new_definition
(*DECODE_M_CORRECTLY_IMP‘,
"DECODE_M_CORRECTLY_IMP (rep: rep_ty) =
! (ins:*wordn) (b:bool) .
let ins_dec = (decode rep (opcode rep ins, b)) in
let opc = (FST (SND ins_dec)) in
let mem_req = (SND (SND ins_dec)) in

let dec_stop = (FST ins_dec) in

(((opc = (F,F,F,F,F)) \/
(opc = (F,F,F,F,T)) \/
(opc = (F,F,F,T,F)) \/
(opc = (F,F,F,T,T)) \/
(opc = (F,F,T,F,F))) => ((mem_req = F) /\ (dec_stop = F)) |

((ope = (1,T,T,T,T)) => ((mem_req = F) /\ (dec_stop = T)) |
((mem_req = T) /\ (dec_stop = F))))}");;

let MK_INST_CORRECT_GOAL n =
let inst = term_list_el n
(snd(dest_eq(
snd(dest_forall(concl macro_inst_list))))}) in
"1 (rep: "rep_ty) (regs:time->(*wordn)list) (m ins din dout:time->*wordn) (ram:time->*memory)
(b stop ovl:time->bool) (mar:time->+address) (res:time->*wordn) (mpc:time->bt7)
(reset_e:time->bool).
DECODE_M_CORRECTLY_IMP rep ==>
(Macro_Int_IMPL_IMP rep
(\t. (reg t,m t,ins t,din t,dout t, ram t,b t,stop t,ovl t, mar t, res t, mpc t))

(\t. reset_e t) "inst)";;

let stop_thm = prove_thm (‘stop_thm‘,
"t (n:num) (t:num).
((Micro_I (rep:“rep_ty)
(\t. reg t,m t, ins t, din t, dout t, ram t, b t, stop t, ovl t,

154

mar t, res t, mpc t)

(\t. reset_e t) /\

(stop t)) /\

(mpc t = (F,F,F,F,F,F,F))) ==>

(reg(t + n),m(t + n),ins(t + n),din(t + n),dout(t + n),ram(t + n),

b(t+n),stop (t+n) ,ov1(t+n) ,mar (t+n),res(t+n) ,mpc(t+n) =
(reg t,m t,ins t,din t,dout t,ram t,b t,stop t,ovl t,mar t,res t,

mpc t))",
INDUCT_TAC THENL [REWRITE_TAC (ADD_CLAUSES];
(GEN_TAC
THEN STRIP_TAC
THEN ASSUM_LIST (\asl. MAP_EVERY ASSUME_TAC (CONJUNCTS
(REWRITE_RULE [(el t asl); (el 2 asl):
(el 3 asl); PAIR_EQ] (SPEC "t:time" (el 4 asl)))))
THEN PURE_REWRITE_TAC[ADD1]
THEN PURE_ONCE_REWRITE_TAC[ADD_ASS0C)
THEN IMP_RES_TAC (el 1 Micro_Int_Inst_list)
THEN ASSUM_LIST (\asl. MAP_EVERY ASSUME_TAC
(CONJUNCTS (REWRITE_RULE [(el 8 asl);PAIR_EQ] (el 2 asl))))
THEN ASM_REWRITE_TAC[1)]);;

map (delete_cache o fst) (cached_theories());;

let T_PLUS_7_LEMMA = TAC_PROOF

(0T, " e e+7= (U D+ D+ 1D+ D +1)+1)+1)),
GEN_TAC

THEN REPEAT (PURE_ONCE_REWRITE_TAC (SYM_RULE ADD_ASSGC]
THEN DEC_ADD_TAC));;

155

Appendix E: MICRO LEVEL SPECIFICATION

File: ucode_aux.ml

Description: Defines the ML functions and constants necessary to describe
the microintrcutions. This file is loaded by several files

that draft theories.

Modified by ETS:

Includes new wait microinstruction labels
Removed seq control case stop_ovl_ill_pdest

This case can be simulated by using
stop_ovl and stop_ill_pdest.
Added stop_pcuwrite.

set_search_path (search_path() @ lib_dir_list);;
system ‘/bin/rm ucode_aux.th‘;;
new_theory ‘ucode_aux‘;;

map new_parent [‘tuple’; ‘decimal‘l;;

The functional representation of a microinstruction:
(address, seq_alu_ctl(seq, alu), dec_ctl(sig), mem(op),
srcdst(rfc, dfc, rfsel, dfsel), enable(copy), select{addrout, datain, mout))

The possible values of various arguments is as follows: (X = don’t care)
address - symbol / X7
seq - idle / mjmp / opcjmp / jmp / stop_ovl / stop_ill_addr /
stop_ill_pdest / stop_pcwrite
alu - mthro (or idle) / rthro / compare / negate / add_bcarry /
add / sub_bcarry / sub / xor / and / nor / and_not /
shr_s / shr_b / shl_s / shl b

sig - inhibit / allow
op - idle / rio / rmem / wio / wmen
rfc ~ inst_rf (or X) / m_rf

dfc inst_df (or X) / m_df
rfsel - regh (or X) / regX / regY / regP
dfsel - regh (or X) / regX / regY / regP / regM / regADDR

copy - none / data / res / both

m PR YT S T
b :

PRECEDING 2AGE BLAMNY NCT FILMED

157

addrout - p (or X) / addr

datain - m (or X) / ins

mout - m (or X) / one / addr

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

X7 = "(F,F,F,F,F,F,F)";;
fetch = "(F,F,F,F,F,F,F)";;
noop = "(F,F,F,F,T,T,F)";;
shrst = "(F,F,F,T,T,T,F)";;

shrb1 = "(F,F,T,F,F,F,T)";;

shlb1l “(F,F,T,F,T,F,F)";;
mf0 = "(F,F,T,F,T,T,T)";;

mf0t = “(F,T,F,F,F,F,F)";;
mf11l = "(F,T,F,F,F,T,F)";;
mf21 = "(F,T,F,F,T,F,T)";;
base = "(F,T,F,F,T,T,F)";;
comparel = "(F,T,T,T,T,F,F)";;
writemem! = "(F,T,T,T,T,F,T)";;
writeiol = "(F,T,T,T,T,T,T)";;
neg! = "(T,F,F,F,F,F,T)";;
calli = "(T,F,F,F,T,F,F)";:
readiot = "(T,F,F,T,F,F,F)";;
readmem! = "(T,F,F,T,T,F,F)";;
addbl = “(T,F,F,T,T,T,D)";;
addst = "(T,F,T,F,F,F,T)";;

subbl = "“(T,F,T,F,T,F,T)";;

subs1 "(T,F,T,F,T,T,T)";;

158

let

let

let

let

let

let

let

let

let i

let

let

let

let

let

let

let

let

xorl =
andl =
norl =
vait_1
wait_2
wait_3

vait_4

njmp =

opcjmp

jmp =3

"(1,F,T,T,F,T,T)";;

“(T,F,T,T,T,F,T)";;

"(T,F,T,T,T,T,T)";;

“(T,T.F,F,T,F,F)";;

“(T,T,F,F,F,T,T)";;

= "(T,T,F,F,F,T,F)";;

“(T,T,F,F,F,F,T)";;

[}

; A-—-- dont care ------ %

1y

stop_ovl = 4;;

stop_ill_addr = S;;

stop_.ill_pdest = 6;;

stop_pcwrite = 7;;

seq_ctl x =

(x = idle) => "(F, F, F)" |

(x = mjmp) => "(F, F, T)" |

(x = opcjmp) => "(F, T, F) |

(x = jmp) =>"(F, T, T)" |

(x = stop_ovl) => "(T, F, F)" |

(x = stop_ill_addr) => "(T, F, T)" |

(x = stop_ill_pdest) => "(T, T, F)"'|
"(T, T, T)";;

159

% idle = 0 %

let mthro

#
<o

let rthro

§l
-

let compare = 2;;

let negate = 3;;

let add_bcarry = 4;;
let add = 5;;
let sub_bcarry = 6;;

let sub = 7;;

let xor = 8;;

let and = 9;;

let nor = 10;;

let and_not = 11;;

let shr_s = 12;;

let shr_b = 13;;

let shl_s 14;;

let shl_b = 15;;

let alu_ctl x =
(x = idle) => "(F, F, F, FI" |
(x = mthro) => "(F, F, F, F)" |
(x = rthro) => "(F, F, F, T)" |
(x = compare) => "(F, F, T, F)" |
(x = negate) => "(F, F, T, I)" |
(x = add_bcarry) => "(F, T, F, F)" |
(x = add) => "(F, T, F,)" |
(x = sub_bcarry) =>"(F, T, T, F)" |
(x =sub) => "(F, T, T, T)" |
(x = xor) =>"(T, F, F, F)" |
(x = and) => "(T, F, F, T)" |
(x = nor) =>"(T, F, T, F)" |
(x = and_not) => "(T, F, T, D" |
(x = shr_s) => "(T, T, F,)" |
(x = shr_b) => "(T, T, F, TO" |

160

(x = shl_s) =>'"(T, T, T, F) |
(T, T, T,)" ;;

let seq_alu_ctl (seq, alu) =
“("(seq.ctl seq), ~(alu_ctl alu))";;

Y= e o e
Definition of decoder control signal
__ Y
let inhibit = "F";;
let allow = "T";;
let dec_ctl (sig) = ""sig";;
Y e e
Definition of memory control signals
__ Y
let rio = 1;;
let rmem = 2;;
let wio = 3;;
let wmem = 4;;
let mem (op) =

(op = idle} => "(F,F,F)"

(op = rie) => "(T,F,T)" |

(op = rmem) => "(T,F,F)" |

(op = wio) => "(F,T,T)" |

"(F,T,F)";;

Y m e e ———————————————
Definition of source & destination reg select lines
__ Y
let regh = 0;;
let regX = 1;;
let regY = 2;;
let regP = 3;;
let regM = 6;;

let regADDR = 7;;

161

let inst_rf = 0;;

let m_rf = 1;;

let inst_df = 0;;

let m_df = 1;;
let rf x =
((x = regh) or (x = X)) =>"(F,)" |
(x = regX) => "(F, T)" |
(x = regY) =>"(T, ©)" |
“(T, T)";;
let d4f x =

((x = regh) or (x = X)) => "(F, F, F)" |
(x = regX) => "(F, F, T)" |
(x = regY) =>"(F, T,)" |
(x = regP) => "(F, T,)" |
(x = regh) => "(T, T, F)" |
(x = regADDR) => "(T, T, T)" |
"(F, T, T)";; % P register %

let srcdst (rfc, dfc, rfsel, dfsel) =
v(~(rf rfsel), ~(df dfsel),
“((rfc = m_rf) => "T"{"F"),
“((dfc = m_df) => "T" |"F"))":;

let none = 0;;

let data

]
-

let res = 2;;
let both = 3;;

let enable (x) =
(x = none) => "“(F, F)" |

(x = data) => "(T, F)" |
(x = res) => "(F, T)" |
n (T, T)" 0
e B R %
let p = 0;;
letm = 0;;

let ins = 1;;

162

let

let

let

let

one

addr

whic
(x =

(x =

(x

sele

=15

= 2;;

hm x =

m) =>"(F, F)" |
one) => "(F, T)" |
addr) => "(T, F)" |

(T, T)";;
¢t (addrout, datain, mout) =
"("((addrout = addr) => "T" | "F"),
“((datain = ins) => "T" | "F"),

“(vhichm mout))";;

163

File: def_uinst.ml

Description: Defines the microinstructions and microrom for the

micro--level.

Modifications by ETS
Include new wait, NO_PC_WRITE and CK_VALID_PC, NO_OVL microinstructions.
Replaced SHLS_u3_mc with NO_OVL fby CK_VALID_PC
Logical operations’ semantics now stop on write to pc

Reorganized microcode slightly

NO_PC_WRITE changed to AXY_WRITE (i/o space and memory also invalid)

——omemeees %

set_search_path (search_path() @ lib_dir_list);;
system ‘/bin/rm uinst.th‘;;
loadf ‘ucode_aux‘;;

new_theory ‘uinst’;;

./. - e e e o 1 o o B S i A o - O e S e i o e

If you change these addresses, change the list in ucode_aux.ml

as well.

let wait_o0 = "(T,T,F,F,T,F,T)";; is not in ucode_aux.ml

let X7 = "(F,F,F,F,F,F,F)";;
let fetch = "(F,F,F,F,F,F,F)";;

let noop = "(F,F,F,F,T,T,F)";;

IEt Shrsl = "(F:FvF!T,T,T,F)";;
let shrbt = "(F,F,T,F,F,F,T)";;
let shlbl = "(F,F,T,F,T,F,F)";;

let mf0 = "(F,F,T,F,T,T,T)";:
let mf01 = "(F,T,F,F,F,F,F)";;

let mf11 = "(F,T,F,F,F,T,F)";;

164

let mf21 = "(F,T,F,F,T,F,T)";;

let base = "(F,T,F,F,T,T,F)";;

let comparel = "(F,T,T,T,F,T,T)";;
let writememi = “(F,T,T,T,T,F,T)";;
let writeioi = "(F,T,T,T,T,T,T)";;
let negl = "(T,F,F,F,F,F,T)";;

let calll = “(T,F,F,F,T,F,F)";;
let readiol = "(T,F,F,T,F,F,F)";;
let readmeml = "(T,F,F,T,T,F,F)";;
let addbil = "(T,F,F,T,T,T,T)";;
let addst = "(T,F,T,F,F,F,T)";;
let subbl = “(T,F,T,F,T,F,T)";;
let subsl = "(T,F,T,F,T,T,T)";;
let xorl = "(T,F,T,T,F,T,TD";;

let andl = "(T,F,T,T,T,F,T)";;

let nori = "(T,F,T,T7,T,T,T)";;

let wait_0 = "(T,T,F,F,T,F,D";;
let wait_1 = "“(T,T,F,F,T,F,F)";;
let wait_2 = "(T,T,F,F,F,T,D";;
let wait_3 = “(T,T,F,F,F,T,F)";;
let wait_4 = "(T,T,F,F,F,F,T)";;
%--- added by ETS ----%

let AXY_WRITE_mc = new_definition

(“AXY_WRITE_mc®,
"AXY_WRITE mc =

("X7, “(seq_alu_ctl(stop_pcwrite, idle)), ~(dec_ctl(inhibit)),
- (mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)),

" (sel
)i

ect(X, X, X)»"

165

let CK_VALID_PC_mc = new_definition
(‘CK_VALID_PC_mc‘,
"CK_VALID_PC_mc =
("%7, "“(seq_alu_ctl{stop_ill_pdest, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), ~“(srcdst(X,X,X,X)), ~(enable(none)),
“(select(X, X, X2))"
)i

let NO_OVL_mc = new_definition
(‘NO_OVL_mc*,
"NO_OVL_mc =
(°X7, “(seq_alu_ctl(stop_ovl, idle)), “(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)),
“(select(X, X, X))"

let FETCH_ul_mc = new_definition
(‘FETCH_ul_mc*,
"FETCH_ul_mc =
(°X7, “(seq_alu_ctl(idle, idle)), ~(dec_ctl(inhibit)),
“(mem(rmem)), ~“(srcdst(X,X,X,X)), ~(enable(none)), ~(select(p,X,X)))"
)i

let FETCH_u2_mc = new_definition
(*FETCH_u2_mc*,
"FETCH_u2_mc =
(°X7, “(seq_alu_ctl(idle, add)), ~(dec_ctl(inhibit)), ~(mem(idle)),
“(srcdst(m_rf,m_df,regP,regP)), ~(enable(res)), ~(select(X, X, one)))"
)i

let FETCH_u3_mc = new_definition
(‘FETCH_u3_mc*,
"FETCH_u3_mc =
("X7, ~(seq_alu_ctl(stop_ill_addr, idle)), ~(dec_ctl(inhibit)),
~(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)),
“(select(X, X, X))"
VAR

let FETCH_ud4_mc = new_definition
(‘FETCH_u4_mc*,
"FETCH_u4_mc =
("X7, ~(seq_alu_ctl(idle, idle)), ~(dec_ctl(inhibit)), ~(mem(idle)),
~(srcdst(X,X,X,X)), ~(enable(data)), ~(select(X, ins, X)))"

166

VA

let JMP_reqm_mc = new_definition
(*JMP_regm_mc*,
"JMP_reqm_mc =
("mf0, "(seq_alu_ctl(mjmp, idle)), ~(dec_ctl(allow)),
“(mem(idle)), ~(srecdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let JMP_opc_mc = new_definition
(‘JMP_opc_mc*,
"JMP_opc_mc =
("noop, “(seq_alu_ctl(opcimp, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(ncne)), ~(select(X, X, X)))"
)53

let NOOP_mc = new_definition
(‘NOOP_mc*,
"NOOP_mc =
(“fetch, “(seq_alu_ctl(jmp, idle)), “(dec_ctl{inhibit)),
“(mem(idle)), “(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)is

let SHRS_ul_mc = new_definition
(*SHRS_ul_mc*,
"SHRS ul_mc =
(“shrs1, “(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X.X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let SHRB_ul_mc = new_definition
(‘SHRB_ul_mc*,
"SHRB_ul_mc =
(“shrb1, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), "“(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let SHLS_ul_mc = new_definition
(‘SHLS_ul_mc‘,
"SHLS_ul_mc =
("X7, ~(seq_alu_ctl(idle, shl_s)), ~(dec_ctl(inhibit)), “(mem(idle))},
"(srcdst(inst_rf,inst_df,X,X)), ~(enable(res)), ~(select(X, X, X)))"
)is

let SHLB_ul_mc¢ = new_definition
(‘SHLB_ul_mc*,
"SHLB_ul_mc =

167

(*shlbl, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),
- (mem(idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X)))"

VHH

= new_definition

let SHLB_u2_mc¢

(*SHLB_u2_mc*,

"SHLB_u2_mc =

(“X7, ~(seq_alu_ctl(idle, shl b)), -(dec_ctl(inhibit)),
- (enable(res)), ~(select(X, X, X)N"

~(mem(idle)),
- (srcdst(inst_rf,inst_df,X,X)),

)i
new_definition

let SHRS_u2_mc
~(mem(idle)),

(*SHRS_u2_mc®,
("X7, ~(seq_2lu_ctl(idle, shr_s)), - (dec_ctl(inhibit)),
- (enable(res)), ~(select(X, X, X)))"

"SHRS_u2_mc

‘(srcdst(inst_rf,inst_df,X,X)),

)i

let SHRB_u2_mc

(‘SHRB_u2_mc‘,
(X7, ~(seq_alu_ctl(idle, shr_b)), ~(dec_ctl(inhibit}),

new_definition
~(mem(idle)),

"SHRB_u2_mc
~(srcdst (inst_rf,inst_df,X,X)), ~(enable(res)), ~{(select(X, X,) ODDR

)i
let MFO_ul_mc = new_definition

(‘MFO_ui_mc‘,

"MFO_ul_mc =

(“mf01, ~(seq_alu_ctl(jmp, idle)), - (dec_ctl(inhibit)),
~ (mem(idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X)))"

)i
let MF1_ui_m¢ = new_definition

(‘MF1_ul_mc',
("mf11, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),

“MF1_ul_mc =
- (mem(idle)), ~(srcdst(X,X,X,X)), ‘(enableknone)j, ~(select(X, X, X2)"

)i

new_definition

let MF2_ul_mc

(‘MF2_ul_mc‘,

"MF2_ul_mc =

(~mf21, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl{inhibit)),
- (mem(idle)), ~(srcdst(X,X.X,X)), - (enable(none)), ~(select(X, X, X))"

)HH

168

let MF3_ul_mc = new_definition
(‘MF3_ul_mc*,
"MF3_ul_mc =
(°X7, “(seq.alu_ctl(idle, mthro)), "(dec_ctl(inhibit)), “(mem(idle)),
“(srcdst(X,m_df,X,regM)), ~(enable(res)), ~(select(X, X, addr)))"
Y3

let MF3_u2_mc = new_definition
(‘MF3_u2_mc‘,
"MF3_u2_mc =
(X7, “(seq_alu_ctl(idle, add)), ~(dec_ctl(inhibit)), ~(mem(idle)),
“(srcdst(m_rf,m_df,regY,regADDR)), ~(enable(res)), ~(select(X, X, m)))"
)i

let MF3_u4_mc = new_definition
(‘MF3_u4_nc‘,
"MF3_u4_mc =
("X7, ~(seq_alu_ctl(idle, idle)), ~(dec_ctl(inhibit)),
“(mem(rmem)), ~(srcdst(X,X,X,X)), “ (enable(none)), ~(select(addr, X, X)))"
)i

let MF3_uS_mc = new_definition
(‘MF3_u5_mc*,
"MF3_uS_mc =
("X7, ~(seq_alu_ctl(idle, idle)), “(dec_ ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(data)), -(select(X, m, X)))"
Yis

let MF3_ué_mc = new_definition
(‘MF3_ué_mc‘,
"MF3_u6_mc =
("base,”(seq.alu_ctl(opcjmp,idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let MF2_u3_mc = new_definition
(‘MF2_u3_mc*,
"MF2_u3_mc =
(X7, ~(seq_alu_ctl(idle, add)), ~(dec_ctl(inhibit)), - (mem(idle)),
“(srcdst(m_rf,m_df,regX,regADDR)), ~(enable(res)), ~(select(X, X, m)))"
)is

let COMPARE_ul_mc = new_definition
(*COMPARE_ul_mc*,
"COMPARE_ul_mc =
(“comparel, " (seq_alu_ctl(jmp, idle)), " (dec_ctl(inhibit)),

169

~(mem(idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X)))"

HE
= new_definition

let WRITEMEM_ ul_mc
(*WRITEMEM_ui_mc®,

"WRITEMEM_ul_mc
(“writemenl,” (seq_alu_ctl{(jmp, idle)), (dec_ctl(inhibit)),
- (mem(idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X))"

)i
= new_definition

let WRITEIO_ul_mc
(‘WRITEIO_ui_mc®,

"WRITEIO_ul_mc
(“writeiol,~(seq_alu_ctl{(jmp, idle)), (dec_ctl(inhibit)),
- (mem(idle)), "~ (srcdst(X,X,X,X)), ~(enable(none)}, ~(select(X, X, X)))"

dis

= new_definition

let NEG_ul_mc
(‘NEG_ul_mc*,
"NEG_ul_mc =
(“negl, ~(seq_alu_ctl(jmp, idle)), “(dec_ctl(inhibit))},
~(mem{idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X2))"

)i

let CALL_ul_mc = new_definition

(‘CALL_ul_mc‘,
"CALL_ul_mc =
(“calll, ~(seq_alu_ctl(jmp, idle)), ~{dec_ctl(inhibit)),
- (mem(idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X"

)i
= new_definition

let READIO_ul_mc
(‘READIO_ul_mc®,

"READIO_ul_mc
(~readiol,~(seq_alu_ctl{jmp, idle)), ~(dec_ctl(inhibit)),
~(mem(idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X, X))"

pIHH
= new_definition

let READMEM ul_mc
(‘READMEM_ul_mc‘,

"READMEM_ul_mc =
(“readmem!,” (seq_alu_ctl(jmp, idle)), " (dec_ctl(inhibit)),
)OI

- (mem{idle)), ~(srcdst(X,X,X,X)), - (enable(none)), ~(select(X, X,

)i
= new_definition

let ADDB_ul_mc
(‘ADDB_ui_mc*,
"ADDB_ul_mc =

170

(“addbl, ~(seq_alu_ctl(jmp, idle)), “(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let ADDS_ul_mc = new_definition
(‘ADDS_ul_mc*,
"ADDS_ul_mc¢ =
(Tadds1, “(seq_alu_ctl{jmp, idle)), ~(dec_ctl{(inhibit))},
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let SUBB_ul_mc = new_definition
(‘SUBB_ul_mc°,
"SUBB_ul_mc =
("subbl, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), “(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let SUBS_ul_mc¢ = new_definition
(‘SUBS_ul_mc‘,
"SUBS_ul_mc =
(“subs1, “(seq.alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), "~ (srecdst(X,X,X,X)), "(enable(none)), ~(select(X, X, X)))"
Yis

let XOR_ul_mc = new_definition
(‘XOR_ul_mc*‘,
"XOR_ul_mc =
("xor1l, "(seq_alu_ctl(jmp, idle)), "~(dec_ctl(inhibit)},
“(mem(idle)), ~(srcdst(X,X,X,X)), " (enable(none)), “(select(X, X, X))
VHH

let AND_ul_mc = new_definition
(‘AND_uil_mc*,
"AND_ul_mc =
("and1, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)}),
"(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
Y

let NOR_ul_mc = new_definition
(‘NOR_ul_mc‘,
"NOR_ul_mc =
(“norl, "(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)),
“(mem(idle)), "(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"
)i

let ANDMBAR_ul_mc = new_definition
(*ANDMBAR_ul_mc‘,

171

"ANDMBAR_ul_mc =
("X7, ~(seq_alu_ctl(stop_pcwrite, and_not)), ~(dec_ctl{inhibit)), ~“(mem(idle)),
~(srcdst(inst_rf,inst_df,X,X)), - (enable(res)), ~(select(X, X, m}))"
)i

let COMPARE_u2_mc = new_definition
(*COMPARE_u2_mc*,
"COMPARE _u2_nmc =
("X7, ~(seq_alu_ctl(idle, compare)), ~(dec_ctl{inhibit)), ~(mem(idle)),
- (srcdst(inst_rf,X,X,X)), ~(enable(none)), ~(select(X, X, m)))"
Yis

let WRITEMEM_u2_mc = new_definition
(‘WRITEMEM_u2_mc‘,
"WRITEMEM_u2_mc =
(~X7, ~(seq_alu_ctl(idle, idle)), - (dec_ctl(inhibit)), ~(mem(wmenm)),
- (srcdst (inst_rf,X,X,X)), ~(enable(none)), ~(select(addr, X, HNn"
Yis

let WRITEIO_u2_mc = new_definition
(‘WRITEIO_u2_mc‘,
"WRITEIO_u2_mc =
(~X7, ~(seq_alu_ctl(idle, idle)), ~(dec_ctl(inhibit)), ~(mem{wio)),
~(srcdst(inst_rf,X,X,X)), -~(enable(none)), ~(select(addr, X, X)))"
)i

let NEGATE_u2_mc = new_definition
(*NEGATE_u2_mc‘,
"NEGATE_u2_mc =
(~X7, ~(seq_alu_ctl(idle, negate)), “(dec_ctl(inhibit)), ~(mem(idle)),
- (srcdst(X,inst_df ,X,X)), ~(enable(res)), ~(select(X, X, m)))"
)i

let CALL_u2_mc = new_definition
(*CALL_u2_mc*‘,
"CALL_u2_mc =
(X7, ~(seq_alu_ctl(idle, rthro)), ~(dec_ctl(inhibit)), “(mem(idle)),
~(srcdst (m_rf,m_df ,regP,regl)), ~(enable(res)), ~(select(X, X, nn.
Yis

let CALL_u3_mc = new_definition
(*CALL_u3_mc*,
“CALL_u3_mc =
("X7, "(seq_alu_ctl(idle, mthro)), ‘(dec_ct}(inhiyit)), ~(mem(idle)),
~(srcdst(X,m_df,X,regP)), ~(enable(res)), ~(select(X, X, m)))"
¥ss

let READIO_u2_mc = new_definition

172

(‘READIO_u2_mc*,
"READIQ_u2_mc =

(X7, “(seq.alu_ctl(idle, idle)), ~(dec_ctl{inhibit)),

“(mem(rio)), ~“(srcdst(X,X,X,X)), ~(enable(none)), ~(select(addr,

X, K
)5
let READIO_u4_mc = new_definition
(‘READIO_u4_mc‘,
"READIO_u4_mc =
("X7, “(seq_alu_ctl(stop_pcwrite, mthro)),
“(dec_ctl(inhibit)), ~(mem(idle)),
“(srcdst(X,inst_df,X,X)), ~(enable(res)), “(select(X, X, m)))"
)5
let READMEM_u2_mc = new_definition
(*READMEM_u2_mc‘,
"READMEM_u2_nmc =
("X7, ~(seq_alu_ctl(idle, mthro)), ~(dec_ctl(inhibit)), ~(mem(idle)),

“(srcdst(X,inst_df,X,X)), ~(enable(res)), “(select(X, X, m)))"
)i
let ADDB_u2_mc =
(‘ADDB_u2_mc‘,
"ADDB_u2_mc¢ =

new_definition

(X7, "“(seq_alu_ctl(stop_pcwrite, add_bcarry)),
“(dec_ctl(inhibit)), ~(mem(idle)),

“(srcdst(inst_rf,inst_df,X,X)), “(enable(res)), ~(select(X, X, m)))"
)i

let ADDS_u2_mc = new_definition
(*ADDS_u2_mc*,
“ADDS_u2_mc =

("X7, ~(seq_alu_ctl(idle, add)), ~“(dec_ctl{inhibit)), ~(mem(idle)),

“(srcdst(inst_rf,inst_df,X,X)), ~(enable(res)), ~(select(X, X, m)))"

)i

let SUBB_u2_mc =
(‘SUBB_u2_mc‘,
"SUBB_u2_mc =

new_definition

("X7, ~(seq_alu_ctl(stop_pcwrite, sub_bcarry)),
“(dec_ctl(inhibit)), "“(mem(idle)),

“(srcdst(inst_rf,inst_df,X,X)), ~(enable(res)), ~(select(X, X, m)))"
)i
let SUBS_u2_mc =

(‘SUBS_u2_mc‘,
"SUBS_u2_mc =

new_definition

173

("X7, ~(seq_alu_ctl(idle, sub)), “(dec_ctl(inhibit)), ~(mem(idle)),

~(srcdst(inst_rf,inst_df,X,X)), ~(enable(res)), ~(select(X, X, m)))"
)i

let XOR_u2_mc = new_definition
(‘XDR_u2_mc*,
"XOR_u2_mc =
(~X7, ~(seq_alu_ctl(stop_pcwrite, xor)),
“(dec_ctl(inhibit)), ~(mem(idle)),

~(sredst(inst_rf,inst_df,X,X)), ~(enable(res)), ~(select(X, X, m)))"
)i

let AND_u?2_mc = new_definition
(“AND_u2_mc‘,
"AND_u2_mc =

("X7, ~(seq_alu_ctl(stop_pcurite, and)), ~(dec_ctl(inhibit}), “(mem(idle)),

~(srcdst(inst_rf,inst_df,X,X)), ~(enable(res)), " (select(X, X, m)))"
)i

let NOR_u2_mc = new_definition
(‘NOR_u2_mc‘,
"NOR_u2_mc =

("X7, ~(seq_alu_ctl(stop_pcwrite, nor)), ~(dec_ctl(inhibit}), " (mem(idle)),

-(srcdst(inst_rf,inst_df,X,X)), ~(enable(res)), ~(select(X, X, m)))"

The following were added to pad out fetches so that
the synchronous interpreter model could be used

let MF3_uéwl_mc = new_definition
(‘MF3_u6wl_mc*,

"MF3_u6wl_mc =
(vait_0, ~(seq_alu_ctl(jmp, idle)), ~(dec_ctl(inhibit)), ~(mem(idle)}),
~(srcdst(X,X,X,X)), ~(enable(none)), ‘(seléct(x,'x, X))
Y
let MF3_ulw4_mc = new_definition

(*MF3_ulw4_mc‘,

"MF3_ulw4_mc =
(“vait_4, ~(seq_alu_ctl(jmp, mthre)), ~(dec_ctl(inhibit)), " (mem(idle)),

~(srcdst(X,m_df,X,regM)), ~(enable(res)), ~(select(X, X, addr)))"
)i

let MF3_uSw3_mc = new_definition

174

(‘MF3_u5w3_mc*,
"MF3_uSw3_mc =
("wait_3, “(seq_alu_ctl(jmp, idle)), “(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(data)), ~(select(X, m, X))"
)i

let WAIT_mc = nev_definition
(‘WAIT mc‘,
"WAIT mc =
(°X7, “(seq_alu_ctl(idle, idle)), “(dec_ctl(inhibit)),
“(mem(idle)), ~(srcdst(X,X,X,X)), ~(enable(none)), ~(select(X, X, X)))"

This list must contain the microinstructions that implement the

behavior in the definition micro_inst_list defined in def_micro.ml.

let micro_rom = new_definition
(‘micro_rom¢,

"In . micro_romn =
EL n
[FETCH_ul_mc;

FETCH_uZ2_mc;
FETCH_u3_mc;
FETCH_u4_mc;
JMP_reqm_mc;
JMP_opc_mc;
NOOP_mc;
SHRS_ul_mc;
SHRB_ul_mc;
SHLB_ul_mc;
AXY_WRITE_ mc;
SHLS_ul_mc;
NO_OVL_mc;
NOOP_mc;
AXY_WRITE mc;
SHRS_u2_mc;
NGOP_mc;
AXY_WRITE_mc;
SHRB_u2_nc;
NOOP_mc;
AXY_WRITE_mc;
SHLB_u2_nc;
NOOP_mc;
MFO_ul_mc;
MFi_ul_mc;

175

MF2_ul_mc;
MF3_ui_mc;
MF3_u2_mc;
FETCH_u3_mc;
MF3_ud_mc;
MF3_ub5_mc;
MF3_ubwi_mc;
MF3_ulwé_mc;
MF3_ub_mc;
MF3_u4_mc;
MF3_uSw3_mc;
MF3_ué_mc;
MF3_ul_mc;
MF2_u3_mc;
FETCH_u3_mc;
MF3_u4_mc;
MF3_uS_mc;
MF3_u6_mc;
COMPARE _ul_mc;
WRITEMEM_ul_mc;
WRITEIO_ ul_mc;
NEG_ul_mc;
CALL_ul_mc;
READIO_ul_mc;
READMEM_ul_mc;
ADDB_ul_mc;
ADDS _ul_mc;
SUBB_ul_mc;
SUBS_ul_mc;
XOR_ui_mc;
AND_ul_mc;
NOR_ul_mc;
ANDMBAR _ul_mc;
NOGP_mc;
COMPARE _u2_mc;
NOOP _mc;
WRITEMEM_u2_mc;
NOGP_mc;
WRITEIO_u2_mc;
NOOP_mc;
AXY_WRITE mc;
NEGATE_u2_mc;
NOOP_mc;
CALL_u2_mc;
CALL_u3_mc;
FETCH_u3_mc;
NOOP_mc;

176

READIO_u2_mc;
MF3_uS_mc;
READIO_u4_mc;
NOOP _mc;
READMEM_u2_mc;
CK_VALID_PC_mc;
NOOP_mc;
ADDB_u2_mc;
NOOP_mc;
ADDS_u2_mc;
CK_VALID_PC_mc;
NO_OVL_mc;
NGOP_mc;
SUBB_u2_mc;
NOOP_mc;
SUBS_u2_mc;
CK_VALID_PC_mc;
NO_OVL_mc;
NOOP_mc;
XOR_u2_mc;
NOCP_mc;
AND_u2_mc;
NOOP_mc;
NOR_u2_mc;
NOOP _mc;

WAIT _mc;

WAIT mc;

WAIT mc;

WAIT _mc;
MF3_ué_nc;
NODP_mc;
NOOP_mc;
NOOP_mc;
NOOP_mc;
NOOP_mc;

NOOP _mc;
NOOP_mc;
NOOP_mc;
NOOP_mc;
NOOP_mc;

NOOP _nc;
NOOP_mc;

NOOP _mc;
NOOP_mc;

NOOP _mc;
NOOP_mc;

NOOP _mc;

177

)..

y

NOOP_mc;
NOOP_mc;
NOOP _mc;
NOOP _nc;
NOOP_mc;
NOOP_mc;
NOOP_mc;
NOOP_mc;
NOOP_mc]"

save_thm(‘micro_rom_expanded®,

SUBS [FETCH_ul_mc; FETCH_u2_mc; FETCH_u3_mc; FETCH_u4_mc; JMP_reqm_mc;

)i

JMP_opc_mc; NOOP_mc; SHRS_ul_mc; SHRB_ul_mc; SHLS_ul_mc; SHLB_ul_mc;
SHRS_u2_mc; SHRB_u2_mc; MFO_ul_mc; MF3_u6wl_nc;

MFi_ul_mc; MF2_ul_mc; MF3_ul_mc; MF3_u2_mc; MF3_u4_mc; MF3_uS_mc:
MF3_ué_mc; MF2_u3_mc; COMPARE_ul_mc; WRITEMEM_ul_mc; WRITEIO_ul_mc;
NEG_ul_mc; CALL_ul_mc; READIO_ul_mc; READMEM_ul_mc; ADDB_ul_mc;
ADDS_ul_mc; SUBB_ul_mc; SUBS_ul_mc; XOR_ul_mc; AND_ul_mc; NOR_ul_mc;
ANDMBAR _ul_mc; COMPARE_ u2_mc; WRITEMEM_u2_mc; WRITEIO_u2_mc;

NEGATE u2_mc; CALL_u2_mc; CALL_u3_mc; READIO_u2_mc; READIO_ué4_mc;
ADDB_u2_mc; ADDS_u2_mc; SUBB_u2_mc; SUBS_u2_mc; XOR_u2_mc; AND_u2_mc;
NOR_u2_mc; MF3_ulv4_mc; MF3_uSw3_mc; WAIT.mc; CK_VALID_PC_nmc;
AXY_WRITE_mc;NO_OVL_mc;SHLB_u2_mc; READMEM_u2_mc]

nicro_rom

close_theory();;

178

File: def _micro.ml

Description: Defines the behavioral description of the micro

interpreter level

Modified by Tony Leung to add wait states to memory fetches to patch

up instruction micro cycles.

Modified by ETS to include AXY_WR and CK_VAL_PC microinstructions

set_search_path (search_path() @ 1lib_dir_list);;

loadf ‘abstract‘;;

system ‘/bin/rm micro_def.th‘;;

nev_theory ‘micro_def‘;;

map nev_parent [‘tuple‘; ‘aux_def‘; ‘regs_def‘; ‘aux_thms‘];;
let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let add_bt7 = new_definition
(‘add_bt7°,
"t xy .
add_bt7 x y =
bt7_ival ((bt7_val x) + y)"
)i

let FETCH_ addr = "(F,F,F,F,F,F,F)";;
let NOOP_addr = "(F,F,F,F,T,T,F)";;

let SHRS1_addr

"(F,F,F,T,T,T,F)";;

let SHRB1_addr = "(F,F,T,F,F,F,T)";;

let SHLB1_addr = "(F,F,T,F,T,F,F)";;

let MFO_addr = "“(F,F,T,F,T,T,T)";;

let MFO1_addr = "(F,T,F,F,F,F,F)";;

let MF11_addr

"(F,T,F,F,F,T,F)";;

let MF21_addr

[}

“(F,T,F,F,T,F,T)";;

let BASE_addr = "(F,T,F,F,T,T,FD";;

179

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

let

COMPARE1_addr = "(F,T,T,T,F,T,T0";;
WRITEMEM1_addr = "(F,T,T,T,T.F,T)";;
WRITEIO1_addr = “(F,T,T,T,T,T.T)";;
NEG1_addr = "(T,F,F,F,F,F,T)";;
CALL1_addr = "(T,F,F,F,T,F,F)";;
READIO1_addr = "(T,F,F,T,F,F,F)";;
READMEM1_addr = "(T,F,F,T,T,F,F)";;
ADDB1_addr = "(T,F,F,T,T,T,T)";;
ADDS1_addr = "(T,F,T,F,F,F,T)";;
SUBB1_addr = "(T,F,T,F,T,F,T)";;
SUBS1_addr = "(T,F,T,F,T,T,T)";;
XOR1_addr = "(T,F,T,T,F,T,T)";;
AND1_addr = "(T,F,T,T,T,F,T)";;

NOR1_addr = "(T,F,T,T,T,T,T)";;

wait_0_addr = "(T,T,F,F,T,F,T)";;

vait_1_addr = "(T,T,F,F,T,F,F)"s;

vait_2_addr = "(T,T,F,F,F,T,T)";;

wait_3_addr = "(T,T,F,F,F,T,F)";;

wait_4_addr = "(T,T,F,F,F,F,T)";;

%

=
[
3]
]
(<]
[on
=}
wn
ot
H
[+
[3)
Pad
[R
o
=]
w
-
-
=
[=]
=
o
o
o
|
o
[}
7]
ot
H
13
o
L

let

ANDMBAR_ul = new_definition

(“ANDMBAR_ul‘,

"1 (rep:“rep_ty) (regs:(#wordn)list) (m ins din dout:#vordn) (ram:smemory)

(b stop ovl:bool) (mar:saddress) (res:

(reset:bool).

xwordn) (mpc:bt7)

ANDMBAR_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let new_stop = {((DSF rep ins = (F,T,
(DSF rep ins = (T,F,

180

™ \/
F)) \/

(T,F,T)) \/

(T,T,F)) \/ -

(T,T,T))) in

let randmbar = band rep ((EL (bt2_val(RSF rep ins)) regs),bnot rep m) in

(DSF rep ins

(DSF rep ins

(DSF rep ins

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
((new_stop => regs | update_reg regs (DSF rep ins) b randmbar),
m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | randmbar),
(new_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1))"
%
(update_reg regs (DSF rep ins) b randmbar,m,ins, din, dout, ram,
b, new_stop, F, mar, randmbar, add_bt7 mpc 1)"
%
)is

save_thm(‘ANDMBAR_ul‘,EXPAND_LET_RULE ANDMBAR_ul):;

let FETCH_ul = new_definition
(‘FETCH_ul_def",
"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:=wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:swordn) (mpc:bt7)
(reset:bool).
FETCH_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let paddr = address rep (EL p_reg regs) in
stop => (regs,m, ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(regs, m, ins, fetch rep (ram, paddr), dout, ram, b, F, F,
paddr, m, add_bt7 mpc 1) "
Y5

save_thm(‘FETCH_ul‘,EXPAND_LET_RULE FETCH_ul);;

let FETCH_u2 = new_definition
(‘FETCH_u2_def‘,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:#*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
FETCH_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let newp = add rep ((EL p_reg regs), (wordn rep 1)) in

181

stop => (regs,m,ins,din,dout,ran,b,T,ovl,mar,res, FETCH_addr)
(update_reg regs (F,T,T) b newp, m, ins, din, dout, ram, b,
F, aovil rep ((EL p_reg regs), (wordn rep 1), newp),
mar, newp, add_bt7 mpc 1) "
)i

save_thm(‘FETCH_u2‘,EXPAND_LET_RULE FETCH_u2);;

let FETCH_u3 = new_definition
(‘FETCH_u3_def‘,
"i(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:saddress) (res:*wordn) (mpc:bt7)
(reset:bool).
FETCH_u3 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let new_stop = ~(valid_address rep res) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar, (new_stop => res | m),
(new_stop => (F,F,F,F,F,F,F) | (add_bt7 mpc 1)))"
P

save_thm(‘FETCH_u3‘,EXPAND_LET_RULE FETCH_u3);;

__ ‘/.
let FETCH_u4 = new_definition

(‘FETCH_ud_def*,

"1 (rep: rep_ty) (regs:(*vordn)list) (m ins din dout:swordn) (ram:*memory)

(b stop ovl:bool) (mar:saddress) (res:*wordn) (mpc:bt7)
(reset:bool).
FETCH_u4 rep (regs,m,ins,din,dout,ram,b,stop,ovl,nar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,’FETCH_addr)
(regs, m, din, din, dout, ram, b, F, F, mar, m, add_bt7 mpc 1)"
)i

save_thm(‘FETCH_u4‘,EXPAND_LET_RULE FETCH_u4);;

let JMP_reqm = new_definition

(“IMP_regm‘,

182

"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
JMP_reqm rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let ins_dec = (decode rep (opcode rep ins, b)) in
let new_stop =
(FST ins_dec \/ (((FST(SND(ins_dec)) = (F,F,T,T,F)) \/
(FST(SND(ins_dec)) = (F,F,T,T,T)))
/\ ((MSF rep ins) = (F,F)))) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,”FETCH_addr)
(regs, m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | m),
(new_stop => (F,F,F,F,F,F,F)
SND (SND ins_dec) => add_bt7 "MFO_addr (bt2_val(MSF rep ins))}
add_bt7 mpc 1)) "

)i

save_thm(‘JMP_requ‘,EXPAND_LET_RULE JMP_reqm);;

let JMP_opc = new_definition

(*JMP_opc*,

"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:*vordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).

JMP_opc rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, add_bt7

"NOOP_addr (btS5_val (FST (SND ¢decode rep (opcode rep ins,b))))))"
)is

save_thm(‘JMP_opc‘,EXPAND_LET_RULE JMP_opc);;

let NQOOP = new_definition
(‘NOOP¢,
"t(rep:~rep_ty) (regs:(*vordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:saddress) (res:*wordn) (mpc:bt7)

(reset:bool).
NOOP rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

183

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, "FETCH_addr ™

)5

save_thm(‘NOOP¢,EXPAND_LET_RULE NOOP);;

let SHRS_ul = new_definition
(‘SHRS_ul’,
"i(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:smemory)

(b stop ovl:bool) (mar:#address) (res:swordn) (mpc:bt7)

(reset:bool).
SHRS_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,*FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, "SHRS1_ addr "

)i

save_thm(‘SHRS_ul‘,EXPAND_LET_RULE SHRS_ul);;

e — e e e — Y
let SHRB_ul = new_definition

(‘SHRB_u1‘,
"1 (rep:“rep_ty) (regs:(#wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:»address) (res:»wordn) (mpc:bt7)

(reset:bool).
SHRE_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar.res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “SHRB1_ addr >

)i

save_thm(‘SHRB_ul‘,EXPAND_LET_RULE SHRB_ul);;

let SHLB_ul = new_definition
(‘SHLB_u1‘,
"t(rep:-rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram: *memory)

(b stop ovl:bool) (mar:+address) (res:*wordn) (mpc:bt7)

(reset:bool).
SHLB_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

184

(regs, m, ins, din, dout, ram, b, F, F, mar, m, "SHLB1_addr)"
M

save_thm(‘SHLB_ul‘,EXPAND_LET_RULE SHLB_ul);;

let AXY_WRITE = new_definition
(‘AXY_WRITE®,
"!(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:wordn) (mpc:bt7)
(reset:bool).

AXY_WRITE rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc)(reset) =

let new_stop = ((DSF rep ins = (F,T,T)) \/
(DSF rep ins = (T,F,F)) \/
(DSF rep ins = (T,F,T)) \/
(DSF rep ins = (T,T,F)) \/
(DSF rep ins = (T,T,T))) in

stop => (regs,m, ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(regs, m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | m),
(new_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1)) "
Yis

save_thm(‘AXY_WRITE‘,EXPAND_LET_RULE AXY_WRITE);;

Micro instruction 11: SHLS - destreg := shifted value

let SHLS_ul = new_definition
(‘SHLS_ut‘,
"!(rep:“rep_ty) (regs:(*vwordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
SHLS_ ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let sval = shl rep (EL (bt2_val(RSF rep ins)) regs) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, “FETCH_addr)
(update_reg regs (DSF rep ins) b sval,m,ins, din, dout, ram, b,
F, bitn rep (EL (bt2_val(RSF rep ins)) regs), mar, sval,
add_bt7 mpc 1)"
)33

save_thm(‘SHLS_ul‘,EXPAND_LET_RULE SHLS_ul);;

185

let NO_OVL = new_definition
(‘NO_OVL‘,
"1 (rep: "rep_ty) (regs:{(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
NO_OVL rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc)(reset) =
%4 let nevw_stop = (ovl) in%
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(regs, m, ins, din, dout, ram, b, ovl, ovl, mar,
(ovl => res | m),
(ovl => (F,F,F,F,F,F,F) | add_bt7 mpc 1)) *©
)is

save_thm(‘NO_OVL'‘,EXPAND_LET_RULE NO_OVL);;

Micro instruction 13: - goto fetch (NGOP)

__ %
let SHRS_u2 = new_definition

(*SHRS_u2‘,

“t(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:s*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
SHRS_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr) |
(update_reg regs (DSF rep ins) b
(shr rep (EL (bt2_val(RSF rep ins)) regs)),
m, ins, din, dout, ram, b, F, F,

mar, (shr rep (EL (bt2_val(RSF rep ins)) regs)), add_bt7 mpc 1)"
Yis

save_thm(‘SHRS_u2‘,EXPAND_LET_RULE SHRS_u2);;

186

Micro instruction 16: - goto fetch (NOOP)

__ Y
y A——— e
Micro instruction 17: AXY_WRITE
__ %
et S
Micro instruction 18: SHRB - destreg := shifted value
__ A

let SHRB_u2 = new_definition
(“SHRB_u2¢,
"!(rep:"rep.ty) (regs:(*wordn)list) (m ins din dout:s*wordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
SHRB_u?2 rep (regs,m,ins,din,dout,ram.b,stop,ovl,mar,res,mpc) (reset) =
let sval = shrb rep ((EL (bt2_val(RSF rep ins)) regs), b) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(update_reg regs (DSF rep ins) b sval, m, ins, din, dout, ram,
bit0 rep (EL (bt2_val(RSF rep ins)) regs), F, F, mar, sval,
add_bt7 mpc 1)"
)3

save_thm(‘SHRB_u2‘,EXPAND_LET_RULE SHRB_u2);:

Y e e e —
Micro instruction 19: - goto fetch (NOOP)
__ Y%
Y e e e
Micro instruction 20: AXY_WRITE
__ Y,
Yy e e e e e
Micro instruction 21: SHLB - destreg := shifted value
__ Y

let SHLB_u2 = new_definition
(‘SHLB_u2‘,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram: *memory)
(b stop ovl:bool) (mar:saddress) {(res:*wordn) (mpc:bt7)
(reset:bool).
SHLB_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let sval = shlb rep ((EL (bt2_val(RSF rep ins)) regs), b) in
stop => (regs,m,ins,din,dout.ram,b,T,ovl,mar,res,”FETCH_addr)

(update_reg regs (DSF rep ins) b sval, m, ins, din, dout, ram,

-3

187

bitn rep (EL (bt2_val(RSF rep ins)) regs), F, F, mar, sval,
add_bt7 mpc 1"
)i

save_thm(‘SHLB_u2‘,EXPAND_LET_RULE SHLB_u2);;

Y e i e i
Micro instruction 22: - goto fetch (NOOP)

—-- ~

Micro instruction 23: fetch m : MF=0 - goto mf0l

let MFO_ul = new_definition
(‘MFO_u1®,
“1(rep: rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram:#*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:btT)

(reset:bool).
MFO_ul Tep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)|

(regs, m, ins, din, dout, ram, b, F, F, mar, m, "MF0O1_addr)"

)i

save_thm(‘MFO_u1‘,EXPAND_LET_RULE MFO_ut);;

Micro instruction 24: fetch m : MF=1 - goto mfll

let MF1_ul = new_definition
(‘MF1_ul’,
“1(rep: rep_ty) (regs:(swordn)list) (m ins din dout :*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
MF1_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,“FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, “MF11_addr)"

)i

save_thm(‘MF1_ul‘,EXPAND_LET_RULE MF1_ul);;

Micro instruction 25: fetch m : MF=2 - goto mf21

let MF2_ul = new_definition
(‘MF2_ul‘,
"1 (rep: rep_ty) (regs:(*¥wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

188

(reset:bool).
MF2_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, "MF21_addr)"
)5

save_thm(‘MF2_ul‘,EXPAND_LET_RULE MF2_ul);;

7. - o 2 o e i o e o et i -
Micro instruction 26: fetch m : MF=3 - M := addr
__ -
let MF3_ul = new_definition

(‘MF3_ut®,

"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:smemory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
{reset:bool).
MF3_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(regs, pad rep (address rep ins), ins, din, dout, ram, b, F, F,

mar, pad rep (address rep ins), add_bt7 mpc 1)"
)i

save_thm(‘MF3_ul‘,EXPAND_LET_RULE MF3_ul);:

let MF3_u2 = new_definition
(‘MF3_u2‘,
"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
MF3_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let mplusy = add rep ((EL y_reg regs),m) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(regs,m, join rep (opcode rep ins, address rep mplusy), din,
dout, ram, b, F, aovil rep ((EL y_reg regs), m, mplusy),
mar, mplusy, add_bt7 mpc 1)"
)i

save_thm(‘MF3_u2‘,EXPAND_LET_RULE MF3_u2);;

Micro instruction 28: fetch m : MF=3 - check if addr > 20 bits (FETCH_u3)

189

Micro instruction 29: fetch m : MF=3 - get word from mem(addr)

let MF3_u4 = new_definition

(‘MF3_u4_def’,
"1 (rep: "rep_ty) (regs:(swordn}list) (m ins din dout:swordn) (ram:xmemory)

(b stop ovl:bool) (mar:*address) (res:xwordn) (mpc:bt7)

(reset:bool).
MF3_u4 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res.mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,“FETCH_addr) |
(regs, m, ins, fetch rep (ram, address rep ins), dout, ram,

b, F, F, address rep ins, m, add_bt7 mpc 1) "
)5

save_thm(‘MF3_u4‘,EXPAND_LET_RULE MF3_u4);;

Micro instruction 30: fetch m : MF=3 - read word into m register

let MF3_u5 = new_definition
(‘MF3_uS_def"’,
"i(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:+wordn) (mpc:bt7)

(reset:bool).
MF3_ub rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,“FETCH_addr)

(regs, din, ins, din, dout, ram, b, F, F, mar, m, add_bt7 mpc 1)"

)i

save_thm(‘MF3_u5‘,EXPAND_LET_RULE MF3_u5);;

Micro instruction 31: fetch m : MF=3 - goto basetopc wait 1 cycle

let MF3_uéwl = new_definition

(‘MF3_uéwl‘,
"i(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
MF3_uéwl rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m.ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “wait_0_addr)"
)i

save_thm(‘MF3_u6wl‘ ,EXPAND_LET_RULE MF3_ubwl);;

190

Micro instruction 32: fetch m : MF=0 - M := addr wait 4 cycles

-- —- --- %

let MF3_ulvw4 = new_definition
(‘MF3_ulw4‘,
"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
MF3_ulw4 rep (regs.m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,'FETCH_addr) |
(regs, pad rep (address rep ins), ins, din, dout, ram, b, F, F,
mar, pad rep (address rep ins), “wait_4_addr)"
)i

save_thm(‘MF3_ulw4‘ ,EXPAND_LET_RULE MF3_ulw4);;

Micro instruction 33: fetch m : MF=0 - goto base+opc (MF3_u§)

Micro instruction 34: fetch m : MF=1 - get word from mem(addr) (MF3_u4)

Y% e e e e e e e e o e e e e

Micro instruction 35: fetch m : MF=1 - read vord into m register wait 3 cycles

let MF3_u5w3 = new_definition

(‘MF3_uSw3_def",

“!(rep: rep_ty) (regs:(*vordn)list) (m ins din dout:*wordn) (ran:*memory)
(b stop ovl:bool) (mar:*address) (res:+wordn) (mpc:bt7)
(reset:bool).

MF3_u5w3 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(regs, din, ins, din, dout, ram, b, F, F, mar, m, “wait_3_addr)"

)i

save_thm(‘MF3_uSw3‘ EXPAND_LET_RULE MF3_u5w3);:

R T pym—— ——————— — e ———————————

191

Micro instruction 38: fetch m : MF=2 - addr :=m + x
- et = e Y
let MF2_u3 = new_definition

(‘MF2_u3‘,

"1 (rep: "rep_ty) (regs: (#wordn)1list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
MF2_u3 rep (regs,m,ins,din,dout,ram,b,stop,pvl,ma;.res,mpc) (reset) =
let mplusx = add rep ((EL x_reg regs),m) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,’FETCH_addr)I
(regs,m, join rep (opcode rep ins, address rep mplusx), din,
dout, ram, b, F, aovfl rep ((EL x_reg regs), m, mplusx),
par, mplusx, add_bt7 mpc 1)"
)i

save_thm(‘MF2_u3‘,EXPAND_LET_RULE MF2_u3);;

Yo mmmmmmm——mm——mmm—e—osm—e oo oo -_— -

Micro instruction 40: fetch m : MF=2 - get word from mem(addr) (MF3_u4)

—-—— - —_——— —— e e -=%

Y- — S e —— e —— -

Micro instruction 41: fetch m : MF=2 - read word into m register (MF3_u$)

e e e e o e o i e e %
let COMPARE_ul = new_definition
(‘COMPARE_ul‘,

"1 (rep: rep_ty) (regs:(*wordn)list) (m ins din dout:»wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
COMPARE_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, ~COMPARE1_addr)"
JHH

save_thm(‘COMPARE ut‘,EXPAND_LET_RULE COMPARE_ul);;

192

let WRITEMEM_ul = new_definition

(‘WRITEMEM_uil‘,
"!(rep:"rep_ty) (regs:(swordn)list) (m ins din dout:swordn) (ram: *memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
WRITEMEM_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr) |

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “WRITEMEM1i_addr)"
)i

save_thm(‘WRITEMEM ui‘,EXPAND_LET_RULE WRITEMEM_ul);;

let WRITEIO_ul = new_definition

(‘WRITEIO_ut®,
“!(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
WRITEIQ_ ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar.res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr) |
(regs, m, ins, din, dout, ram, b, F, F, mar, m, "WRITEIO1_addr)"
b

save_thm(‘WRITEIO_ul‘,EXPAND_LET_RULE WRITEIO_uil):;

let NEG_ul = new_definition

(‘NEG_ul®,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram: *memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
NEG_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “NEG1_addr)"

)i

save_thm(‘NEG_ul‘,EXPAND_LET_RULE NEG_ul);;

193

let CALL_ul = new_definition

(‘CALL_u1‘,

"i(rep: “rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).

CALL_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,npc) (reset) =
stop => (regs,m,ins,din,dout,ram.b,T,ovl.mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, "CALL1_ addr)"

)i

save_thm(‘CALL_u1‘,EXPAND_LET_RULE CALL ul);:

—_— e e 2 e e e o ——=Y

let READIO_ul = new_definition

(‘READIO_ut‘,

") (rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*vordn) (ram:*memory)
(b stop ovl:bool) (mar:»address) (res:xwordn) (mpc:bt7)
(reset:bool).

READIO_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, "READIO1_ addr)"
)i

save_thm(‘READIO_ul‘,EXPAND_LET_RULE READIO_ul);;

Micro instruction 49: READMEM - goto readmeml

_______________________________________ ——— ———————=Y

let READMEM_ul = new_definition
(*READMEM_ul‘,
i (rep: “rep.ty) (regs:(svordn)list) (m ins din dout:vordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
READMEM_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, "READMEM1_ addr "
)i

save_thm(‘READMEM_ul‘,EXPAND_LET_RULE READMEM_ ul);;

194

Micro instruction 50: ADDB - goto addbl

let ADDB_ul = new_definition
(*ADDB_u1l‘,
"!(rep: rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
ADDB_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, “ADDBI_addr)"
bHH

save_thm(‘ADDB_ul‘,EXPAND_LET_RULE ADDB_ul);;

Micro instruction 51: ADDS ~ goto addsl

- - ——- e Y%
let ADDS_utl = new_definition
(*ADDS_u1‘,
"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
ADDS__ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, dout, ram, b, F, F, mar, m, “ADDS1_addr)"

)i

save_thm(‘ADDS_ul‘,EXPAND_LET_RULE ADDS_ul);;

let SUBB_ul = new_definition

(“SUBB_ul‘,

"!(rep:"rep_ty) (regs:{(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).

SUBB_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res.mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, “FETCH_addr) |
(regs, m, ins, din, dout, ram, b, F, F, mar, m, “SUBB1_addr)"
)i

save_thm(‘SUBB_ul‘,EXPAND_LET_RULE SUBB_ul);;

Micro instruction 53: SUBS - goto subsl

195

let SUBS_ul = new_definition

(‘SUBS_ut®,
"1 (rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:saddress) (res:swordn) (mpc:bt7)

(reset:bool).
SUBS_ul rep (regs.m,ins.din,dout,ram,b,stop,ovl,nar,res,mpc) (reset) =

stop => (regs,n,ins.din,dout,ram,b.T,ovl.mar,res,'FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “SUBS1_addr "

)i

save_thm(‘SUBS_ul‘,EXPAND_LET_RULE SUBS_ul);;

let XOR_ul = new_definition

(‘XOR_ul‘,
"1(rep: “rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:+address) (res:*vordn) (mpc:bt7)

(reset:bool).
XOR_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “XOR1_addr)"

Y

save_thm(‘XOR_ut,EXPAND_LET_RULE XOR_uil);;

7. e ————

Micro instruction 55: AND - goto andl
——————————————————————————————————————— ‘/.
let AND_ut = new_definition

(“AND_ul’‘,

"1 (rep: "rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram:s*memory)

(b stop ovl:bool) (mar:#address) (res:*vordn) (mpc:bt7)

(reset:bool).
AND_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, “AND1_addr)"
i3

save_thm(‘AND_ul‘,EXPAND_LET_RULE AND_ul);;

196

let NOR_ul = név_definition
(‘NOR_u1‘,
"!(rep:“rep_ty) (regs:(xvordn)list) (m ins din dout:+wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
NOR_ul rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, "NOR1_addr)"

Y

save_thm(‘NOR_ul‘,EXPAND_LET_RULE NOR_ul);;

let COMPARE_u2 = new_definition
(*COMPARE_u2‘,
"1(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*vordn) (mpc:bt7)
(reset:bool).
COMPARE_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(regs, m, ins, din, dout, ram,
bemp rep ((EL (bt2_val(RSF rep ins)) regs),m,b,FSF rep ins), F,
F, mar, m, add_bt7 mpc 1)"
P

save_thm(‘COMPARE_ _u2‘,EXPAND_LET_RULE COMPARE_u2);;

Y- o et e 1 e e 2 i e . o .

Micro instruction 60: COMPARE - goto fetch (NOOP)

let WRITEMEM_ u2 = new_definition
(‘WRITEMEM_ u2‘,
"1(rep: rep._ty) (regs:(#vordn)list) (m ins din dout:#wordn) (ram:=*memory)
(b stop ovl:bool) (mar:*address) (res:swordn) (mpc:bt7)

(reset:bool).

WRITEMEM_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

197

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, din, EL (bt2_val(RSF rep ins)) regs,
store rep(ram, address rep ins, EL (bt2_val(RSF rep ins)) regs),
b, F, F, address rep ins, m, add_bt7 mpc 1)"
)i

save_thm(‘WRITEMEM_u2‘,EXPAND_LET_RULE WRITEMEM_u2);;

S PERNRRESES R S LLe
Micro instruction 62: WRITEMEM - goto fetch (NOOP)

let WRITEID_u2 = new_definition
(‘WRITEIO_u2‘,
"1 (rep: “rep_ty) (regs:(swordn)list) (m ins din dout:+vordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
WRITEIO_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(regs, m, ins, din, EL (bt2_val(RSF rep ins)) regs,
storeio rep (ram, address rep ins,
EL (bt2_val(RSF rep ins)) regs),
b, F, F, address rep ins, m, add_bt7 mpc 1)"
)i

save_thm(‘WRITEIO_u2‘,EXPAND_LET_RULE WRITEIO_ u2);;

Ymmmmmmmmmm e memmmm e - —
Micro instruction 64: WRITEIO - goto fetch (NOOP)

ettt ittt

e e e e e ————————————— %

let NEGATE_u2 = new_definition
(‘NEGATE_u2‘,
"1 (rep:"rep_ty) (regs:(#wordn)list) (m ins din dout:*vordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).

NEGATE_u2 rep (regs,m,ins.din,dout,ram,b,stop,cvl,mar,res,mpc) (reset) =

198

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,“FETCH_addr)
(update_reg regs (DSF rep ins) b (neg rep m), m, ins, din, dout,
ram, b, F, F, mar, (neg rep m), add_bt7 mpc 1)"
)i

save_thn(‘NEGATE_ u2‘,EXPAND_LET_RULE NEGATE_u2);:

Y e
Micro instruction 67: NEGATE - goto fetch (NDOP)
_____________________ —— — - Y
A e
Micro instruction 68: CALL - y :=p

e e e Y
let CALL_u2 = new_definition

(‘CALL_u2‘,
"1(rep:-rep_ty) (regs:(*wordn)list) (m ins din dout:*vordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
CALL_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(update_reg regs (F,T,F) b (EL p_reg regs), m, ins, din, dout,
ram, b, F, F, mar, (EL p_reg regs), add_bt7 mpc 1)"
)i

save_thm(‘CALL_u2‘,EXPAND_LET_RULE CALL_u2);;

I Y%
let CALL u3 = new_definition
(“CALL_u3‘,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*vordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
CALL_u3 rep (regs,m,ins,din,dout,ram,b,stop,ovl,nar,res,npc) (reset) =
stop => (regs,m.ins,din,dout,ram,b,T.ovl,mar,res,“FETCH_addr)l
(update_reg regs (F,T,T) b m, m, ins, din, dout, ram, b, F, F,
mar, m, add_bt7 mpc 1)"
)is

save_thm(‘CALL_u3‘,EXPAND_LET_RULE CALL_u3);;

199

7' e e e et et e o i i S S e = S =
Micro instruction 71: CALL - goto fetch (NOOP)

let READIO_u2 = new_definition
(*READIO_u2_def’,
"t (rep:"rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) {(mpc:bt7)

(reset:bool).
READIO_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)
(regs, m, ins, fetchio rep (ram, address rep ins), dout, ram,
b, F, F, address rep ins, m, add_bt7 mpc 1) "
)i

save_thm(‘READIO_u2‘,EXPAND_LET_RULE READIO_u2);;

Ymmmm e e e - -—

Micro instruction 74: READIO - destreg := m

READIO_ué4 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,’FETCH_addr)
(update_reg regs (DSF rep ing) b m, m, ins, din, dout,

ram, b, F, F, mar, m, add_bt7 mpc 10"

let READIO_u4 = new_definition
(‘READIO_u4‘,
") (rep:“rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
READIO_u4 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let new_stop = ((DSF rep ins = (F,T,T)) \/
(T,F,F¥) \/
(T,F, T \/
(T,T,F)) \/
(T,T,T))) in

(DSF rep ins

(DSF rep ins

(DSF rep ins

(DSF rep ins
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr)

((new_stop => regs | update_reg regs (DSF rep ins) b m),

200

m, ins, din, dout, ram, b, new_stop,

(new_stop => ovl | F), mar,

(new_stop => res | m),

(new_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1))"
)i

save_thm(‘READIO_u4‘,EXPAND_LET_RULE READIO_u4):;

let READMEM_u?2 = new_definition
(‘READMEM_u2°,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:=address) (res:*wordn) (mpc:bt7)
(reset:bool).
READMEM_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
(update_reg regs (DSF rep ins) b m, m, ins, din, dout,
ram, b, F, F, mar, m, add_bt7 mpc 1)"
)i;

save_thm(‘READMEM_u2‘,EXPAND_LET_RULE READMEM_u?2);;

Micro instruction 77: READMEM ~ check if dest=p /\ result > 20 bits

This use to be SHLB_u?2

let CK_VALID_PC = new_definition
(‘CK_VALID_PC‘,
"t(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
CK_VALID_PC rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let new_stop = (((DSF rep ins = (T,T,F)) \/
(DSF rep ins = (T,T,T)) YN/
(" (((DSF rep ins = (T,F,F)) /\ "b) \/
((DSF rep ins = (T,F,T)) /A b)) /\
((DSF rep ins = (F,T,T)) \/
(DSF rep ins = (T,F,F)) \/

201

(DSF rep ins = (T,F,T))) AN
~(valid_address rep res))) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(regs, m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | m),
(nev_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1)) "
Yis

save_thm(‘CK_VALID_PC‘ ,EXPAND_LET_RULE CK_VALID_PC);;

L)
PRSP EEEE RS SR
Micro instruction 78: READMEM - goto fetch (NOOP)

- e e e o e o o o Y

Micro instruction 79: ADDB - destreg := r+m; b:=carry

let ADDB_u2 = nev_definition
(‘ADDB_u2‘,
"i(rep: "rep_ty) (regs:(*vordn)list) (m ins din dout:*vordn) (ram:*memory)
(b stop ovl:bool) (mar:+address) (res:*vordn) (mpc:bt7)
(reset:bool).
ADDB_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let rplusm = (add rep ({EL (bt2_val(RSF rep ins)) regs),m)) in

let new_stop = ((DSF rep ins = (F,T,T)) \/
(DSF rep ins = (T,F,F)) \/
(DSF rep ins = (T,F,T)) \/
(DSF rep ins = (T,T,F)) \/

(1,7T,T))) in

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr) |

(DSF rep ins

((new_stop => regs | update_reg regs (DSF rep ins) b rplusm),
m, ins, din, dout, ram,
(nev_stop => b |
addp rep((EL (bt2_val(RSF rep ins)) regs),m,rplusm)),
nev_stop,
(new_stop => ovl |
aovfl rep ((EL (bt2_val(RSF rep ins)) regs), m, rplusm)),
mar,
(new_stop => res | rplusm),

(new_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1))"
)i

save_thm(‘ADDB_u2‘,EXPAND_LET_RULE ADDB_u2);;

202

let ADDS_u2 = new_definition
(*ADDS_u2‘,
"!(rep:-rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
ADDS_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let rplusm = (add rep ((EL (bt2_val(RSF rep ins)) regs),m)) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr) |
(update_reg regs (DSF rep ins) b rplusm,m, ins, din, dout, ranm,
b, F, aovfl rep ((EL (bt2_val(RSF rep ins)) regs), m, rplusm),
mar, rplusm, add_bt7 mpc 1)"
)i

save_thm(‘ADDS_u2‘,EXPAND_LET_RULE ADDS_u2);:

= e
Micro instn 82: CK_VALID_PC
__ Y
= = e e e e
Micro instn 83: NO_QVL
__ ‘/.
Y = e e e
Micro instruction 84: ADDS - goto fetch (NOOP)
__ ’/.
Y e e e e oo -

Micro instruction 85: SUBB - destreg := r~m; b:=borrow
__ Y

let SUBB_u2 = new_definition
(‘SUBB_u2‘,
"!(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:#wordn) (ram:*nemory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
SUBB_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let rminusm = (sub rep ((EL (bt2_val(RSF rep ins)) regs),m)) in
let new_stop = ((DSF rep ins = (F,T,T)) \/
(DSF rep ins = (T,F,F)) \/

203

(DSF rep ins = (T,F,T)) \/
(DSF rep ins = (T,T,F)) \/
(DSF rep ins = (T,T,T))) in
stop => (regs,m,ins,din,dout.ram,b,T,ovl,mar,res,‘FETCH_addr)
((nev_stop => regs | update_reg regs (DSF rep ins) b rminusm),
m, ins, din, dout, ranm,
(new_stop => b |
subp rep((EL (bt2_val(RSF rep ins)) regs),m,rminusm}),
new_stop,
(new_stop => ovl |
sovfl rep ((EL (bt2_val(RSF rep ins)) regs), m, rminusm)),
mar,
(new_stop => res | rminusm),

(new_stop => (F,F,F,F,F,F,F) | add_bt? mpc 1))"
)i

save_thm(‘SUBB_u2‘,EXPAND_LET_RULE SUBB_u2);;

let SUBS_u2 = new_definition
(¢SUBS_u2‘,
“i(rep:~rep_ty) (regs:(*wordn)list) (m ins din dout:*yordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
SUBS_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
let rminusm = (sub rep ((EL (bt2_val(RSF rep ins)) regs),m)) in
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)
(update_reg regs (DSF rep ins) b rminusm,m,ins, din, dout, ram,
b, F, sovfl rep ((EL (bt2_val(RSF rep ins)) regs), m, rminusm),

mar, rminusm, add_bt7 mpc 1)"

)i

save_thm(‘SUBS_u2‘,EXPAND_LET_RULE SUBS_u2);;

Micro instruction 89: NO_OVL

204

_______________________________________ ——— %
Y e m -— -—
Micro instruction 91: XOR - destreg := r XOR m
_______ - _— O 4
let XOR_u2 = new_definition

(‘XOR_u2°,

"t(rep: rep_ty) (regs:(*wordn)list) (m ins din dout:#vordn) (ram:*memory)
(b stop ovl:bool) (mar:»address) (res:*wordn) (mpc:bt7)

(reset:bool).
XOR_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let nev_stop = ((DSF rep ins = (F,T,T)) \/
(DSF rep ins = (T,F,F)) \/
(DSF rep ins = (T,F,T)) \/
(DSF rep ins = (T,T,F)) \/

(T,T,T))) in
let rxorm = (bxor rep ((EL (bt2_val(RSF rep ins)) regs),m)) in

(DSF rep ins

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
((new_stop => regs | update_reg regs (DSF rep ins) b rxorm),
m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | rxorm),
(new_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1))"
)i

save_thm(‘XOR_u2‘,EXPAND_LET_RULE XOR_u2);;

_____________________ —— —— -Y%

let AND_u2 = new_definition
(‘AND_u2°¢,
“t(rep:“rep_ty) (regs:(+vordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:#*wordn) (mpc:bt7)
(reset:bool).
AND_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
(F,T,T)) \/
(T,F,F)) \/

let new_stop = ((DSF rep ins

(DSF rep ins

205

(DSF rep ins = (T,F,T)) \/

(T,T,F)) \/

(T,T,T))) in

let randm = (band rep ((EL (bt2_val(RSF rep ins)) regs),m)) in

(DSF rep ins

(DSF rep ins

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, "FETCH_addr)
((new_stop => regs | update_reg regs (DSF rep ins) b randm),
m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | randm),
(new_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1))"
)i

save_thm(‘AND_u2‘,EXPAND_LET_RULE AND_u2);;

let NOR_u2 = new_definition
(‘NGR_u2‘,
“!(rep: rep_ty) (regs:(#wordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*vordn) (mpc:bt7)
(reset:bool).
NOR_u2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

let new_stop = ((DSF rep ins = (F,T,T)) \/

(DSF rep ins = (T,F,F)) \/
(DSF rep ins = (T,F,T)) \/
(DSF rep ins = (T,T,F)) \/

(T,T,T))) in

let rnorm = (bnor rep ((EL (bt2_val(RSF rep ins)) regs),m)) in

(DSF rep ins

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr) |
((new_stop => regs | update_reg regs (DSF rep ins) b rnorm),
m, ins, din, dout, ram, b, new_stop,
(new_stop => ovl | F), mar,
(new_stop => res | rnorm),

(nev_stop => (F,F,F,F,F,F,F) | add_bt7 mpc 1))"

save_thm(‘NOR_u2‘,EXPAND_LET_RULE NOR_u2);;

Micro instruction 96: NOR - goto fetch (NGOP)

206

let vait_4 = new_definition
(‘vait_4°¢,
"!(rep:"rep_ty) (regs:(*wordn)list) (m ins din dout:swordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:swordn) (mpc:bt7)

(reset:bool).
vait_4 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, add_bt7 mpc 1)"
)i
save_thm(‘wait_4‘,EXPAND_LET_RULE wait_4);;

% —

Micro instruction 98: wait 3 cycles

let vait_3 = new_definition
(‘wait_3°¢,
"!(rep:“rep_ty) (regs:(*wordn)list) (m ins din dout:*wordn) (ram: *memory)
(b stop ovl:bool) (mar:*address) (res:swordn) (mpc:bt7)
(reset:bool).
wait_3 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res, FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, add_bt7 mpc 1)"
)i

save_thm(‘wait_3°¢,EXPAND_LET_RULE wait_3);;

let wvait_2 = new_definition
(‘wait_2°,
"!(rep:“rep_ty) (regs:(#vordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).
wait_2 rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =

stop => (regs,m,ins,din,dout,ram,b,T,ovl,mnar,res, FETCH_addr)

(regs, m, ins, din, dout, ram, b, F, F, mar, m, add_bt7 mpc 1)"
)it

save_thm(‘vait_2°‘,EXPAND_LET_RULE wait_2);;

207

let wait_1 = new_definition
(‘wait_1°¢,
"1 (rep: rep_ty) (regs:(swordn)list) (m ins din dout:*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:xwordn) (mpc:bt7)
(reset:bool).
wvait_1 rep (regs,m,ins,din,dout,ram,b,stop,gvl,ma;,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar.res,“FETCH_addr) I

(regs, m, ins, din, dout, ram, b, F, F, mar, m, add_bt7 mpc 1)"

)i

save_thm(‘wait_1‘,EXPAND_LET_RULE wait_1);;

let MF3_ué = new_definition
(‘MF3_ué°‘,
"t (rep: “rep_ty) (regs:(*wordn)list) (m ins din dout :*wordn) (ram:*memory)
(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)
(reset:bool).
MF3_ué rep (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) =
stop => (regs,m,ins,din,dout,ram,b,T,ovl,mar,res,‘FETCH_addr) |
(regs, m, ins, din, dout, ram, b, F, F, mar, m,
add_bt7 “BASE_addr
(bt5_val (FST (SND(decode rep (opcode rep ins, b©))))))"

)i

save_thm(‘MF3_u6‘,EXPAND_LET_RULE MF3_u8);;

Micro instructions 102-127 : NOOP

let micro_state = v ((*#wordn)list#*wordn#*vordn#*wordn#*vordn#
*memory#bool#bool#bool#*address#swordn¥bt?)";;
let micro_env = ":bool";;

The micro_inst_list will be used to instantiate inst_list in

mk_micro.ml.
let micro_inst_list = new_definition

(‘micro_inst_list‘,

"1 rep:rep.ty .

208

micro_inst_list rep =
[((F,F,F,F,F,F,F), (FETCH_ul rep));
((F,F,F,F,F,F,T),(FETCH_u2 rep));
((F,F,F,F,F,T,F),(FETCH_u3 rep));
((F,F,F,F,F,T,T),(FETCH_u4 rep));
((F,F,F,F,T,F,F), (JMP_reqm rep));
((F,F,F,F,T,F,T), (JMP_opc rep));
((F,F,F,F,T,T,F),(NOOP rep));
((F,F,F,F,T,T,T), (SHRS_ul rep));
((F,F,F,T,F,F,F),(SHRB_ul rep));
((F,F,F,T,F,F,T),(SHLB_ul rep));
((F,F,F,T,F,T,F), (AXY_WRITE rep));
((F,F,F,T,F,T,T),(SHLS_ul rep));
((F,F,F,T,T,F,F),(NO_OVL rep)); % this is still late! %
((F,F,F,T,T,F,T), (NOOP rep));
((F,F,F,T,T,T,F), (AXY_WRITE rep));
((F,F,F,T,T,T,T), (SHRS_u2 rep));
((F,F,T,F,F,F,F),(NOOP rep));
((F,F,T,F,F,F,T), (AXY_WRITE rep));
((F,F,T,F,F,T,F),(SHRB_u2 rep));
((F,F,T,F,F,T,T), (NOOP rep));
((F,F,T,F,T,F,F), (AXY_WRITE rep));
((F,F,T,F,T,F,T), (SHLB_u2 rep));
((F,F,T,F,T,T,F), (NOOP rep));
((F,F,T,F,T,T,T), (MFO_u!l rep));
((F,F,T,T,F,F,F),(MF1_ul rep));
((F,F,T,T,F,F,T), (MF2_ul rep));
((F,F,T,T,F,T,F),(MF3_ul rep));
((F,F,T,T,F,T.T), (MF3_u2 rep));
((f,F,T,T,T,F,F),(FETCH_u3 rep));
((F,F,T,T,T,F,T),(MF3_u4 rep));
((F,F,T,T,T,T,F),(MF3_uS rep));
((F,F,T,T,T,T,T), (MF3_u6wl rep));
((F,T,F,F,F,F,F),(MF3_ulw4 rep));
((F,T,F,F,F,F,T),(MF3_u6 rep));
((F,T,F,F,F,T,F),(MF3_u4 rep));
((F,T,F,F,F,T,T), (MF3_u5w3 rep));
((F,T,F,F,T,F,F),(MF3_u6 rep));
((F,T,F,F,T,F,T),(MF3_ul rep));
((F,T,F,F,T,T,F),(MF2_u3 rep));
((F,T,F,F,T,T,T),(FETCH_u3 rep));
((F,T,F,T,F,F,F),(MF3_u4 rep));

209

((F,T,F,T,F,F,T), (MF3_u5 rep));
((F,T,F,T,F,T,F),(MF3_ué rep));
((F,T,F,T,F,T,T), (COMPARE _ul rep));
((F,T,F,T,T,F,F), (WRITEMEM_ul rep));
((F,T,F,T,T,F,T), (WRITEIO ul rep));
((F,T,F,T,T,T,F),(NEG_ul rep));
((F,T,F,T,T,T,T), (CALL_ul rep));
((F,T,T,F,F,F,F),(READIO ul rep));
((F,T,T,F,F,F,T), (READMEM_ul rep));
((F,T,T,F,F,T,F),(ADDB_ul rep));
((F,T,T,F,F,T,T),(ADDS_ul rep));
((F,T,T,F,T,F,F),(SUBB_ul rep));
((F,T,T,F,T,F,T),(SUBS_ul rep));
((f,T,T,F,T,T,F),(X0R_ul rep));
((F,T,T,F,T,T,T),(AND_ul rep));
((F,T,T,T,F,F,F),(NOR_ul repl));
((F,T,T,T,F,F,T), (ANDMBAR_ ul rep)):
((F,T,T,T,F,T,F), (NOOP rep));
((F,T,T,T,F,T,T), (COMPARE_u2 rep)):
((F,T,T,T,T,F,F), (NOOP rep));
((F,T,T,T,T,F,T), (WRITEMEM_ u2 rep)):
((f,T,T,T,T,T,F), (NOOP rep));
((f,T,T,T,T,T,T),(WRITEIO_ u2 repl));
((T,F,F,F,F,F,F), (NOOP rep));
((T,F,F,F,F,F,T),(AXY_WRITE rep));
((T,F,F,F,F,T,F),(NEGATE_u2 rep));
((T,F,F,F,F,T,T), (NOOP rep));
((T,F,F,F,T,F,F),(CALL_u2 rep));
¢(T,F,F,F,T,F,T),(CALL_u3 rep));
((T,F,F,F,T,T,F), (FETCH_u3 rep));:
((1,F,F,F,T,T,T),(NOOP rep));
¢(T,F,F,T,F,F,F), (READIO u2 rep));
((T,F,F,T,F,F,T),(MF3_uS rep));
((T,F,F,T,F,T,F), (READIO u4 rep));
((T,F,F,T,F,T,T),(NOOP rep));
¢{1,F,F,T,T,F,F), (READMEM_u2 rep)):
((1,F,F,T,T,F,T), (CK_LVALID_PC rep));
((T,F,F,T,T,T,F),(NOCP rep));
((r,F,F,T,T,T,T), (ADDB_u2 rep));
((T,F,T,F,F,F,F), (NOOP rep));
((T,F,T,F,F,F,T), (ADDS_u2 rep));
((T,F,T,F,F,T,F),(CK_VALID_PC rep));

210

((1,F,T,F,F,T,T), (NO_OVL rep));
((T,F,T,F,T,F,F), (NOOP rep));
((T,F,T,F,T,F,T), (SUBB_u2 rep));
((T,F,T,F,T,T,F), (NOOP rep));
((T,F,T,F,T,T,T), (SUBS_u2 rep));
«(,F,T,T,F,F,F), (CK_VALID_PC rep));
((T,F,T,T,F,F,T), (NO_OVL repl));
«(T,F,T,T,F,T,F), (NGOP rep));
((T,F,T,T,F,T,T), (XOR_u2 rep));
(«(1,F,T,T,T,F,F), (NOOP rep));
((T,F,T,T,T,F,T), (AND_u2 rep));
((T,F,T,T,T,T,F), (NOOP rep));
((T,F,T,T,T,T,T),(NOR_u2 rep));
((T,T,F,F,F,F,F),(NOOP rep));
«(T,T,F,F,F,F,T),(vait_4 rep));
(«(T,T,F,F,F,T,F), (vait_3 rep));
((T,T,F,F,F,T,T), (vait_2 rep));
((T,T,F,F,T,F,F), (wait_1 rep));
((r,T,F,F,T,F,T),(MF3_ué rep));
«T,T,F,F,T,T,F), (NOOP rep));
((T,T,F,F,T,T,T), (NOQP rep));
«rT,T,F,T,F,F,F), (NOOP rep));
((T,T,F,T,F,F,T), (NOOP rep));
((1,T,F,T,F,T,F), (NOOP repl));
((T,T,F,T,F,T,T), (NOOP rep));
((T,T,F,T,T,F,F),(NOOP rep));
«(r,T,F,T,T,F,T), (NOOP rep));
«(t,T,F,T,T,T,F), (NOOP rep));
((T,T,F,T,T,T,T), (NOOP rep));
«(,T,T,F,F,F,F),(NOOP rep));
«(r,T,T,F,F,F,T), (NOOP rep));
«(1,T,T,F,F,T,F), (NOOP rep));
«T,T,T,F,F,T,T), (NOCP rep));
«T,T,T,F,T,F,F), (NOOP rep));
«(r,T,T,F,T,F,T),(NOOP rep));
«T1,T,T,F,T,T,F),(NOOP rep));
«T,T,T,F,T,T,T), (NOOP rep));
«7,T,T,T,F,F,F),(NOOP rep));
«r,1,T,T,F,F,T), (NOOP rep));
«(,7,T,T,F,T,F),(NOOP rep));
«(,T,T,T,F,T,T), (NOOP rep));
«r,T,T.T,T,F,F), (NOOP rep));

211

«(T,T,T,T,T,F,T), (NOOP rep));
«T,T,T7,T7,T,T,F), (NOOP rep));
«1,T1,7,7,T,T,T), (NOOP rep))]"

Select MPC from state. This is used to instantiate gen_I.th.
___ __'/.
let GetMPC = new_definition

(‘GetMPC‘,

"1 (regs: (#wordn)list) (m ins din dout :*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7)

(reset:bool).

GetMPC (regs,m,ins,din,dout,ram,b,stop,ovl,mar,res,mpc) (reset) = mpc"

let PhaseCycles = new_definition
{‘PhaseCycles‘,
“1key:bt7. PhaseCycles key =3 "

VHH

close_theory(};;

212

File: micro_aux.ml

Description: Defines the micro level interpreter in terms of the

definitions in micro_def.th, phase.th, and gen_I.th.

Proves the lemmas for each microinstruction and
saves them.

Modified by ETS to include AXY_WRITE and CK_VAL_PC

set_search_path (search_path() € lib_dir_list);;
loadf ‘abstract‘;;

% this definition isn’t in abstract yet %
let TAC_PROOF : (goal # tactic) -=> thm =
set_fail_prefix ‘TAC_PROOF®
(\(g,tac).
let new_g = ((fst g) @ theory_obligation_list,snd g) in
let gl,p = tac new_g in
if null gl then p[]
else (
message (‘Unsolved goals:‘);
map print_goal gl;
print_newline();

failwith ‘unsolved goals‘));;
system ‘/bin/rm micro_aux.th';:;
new_theory ‘micro_aux‘;;

%
extend_theory ‘micro_aux‘;;

%

loadf ‘tuple‘;;

map new_parent [‘gen_I‘;‘micro_def‘;‘phase‘;‘uinst‘;‘threeval‘];;
autoload_theory ‘ucode_def‘;;

load_definitions ‘threeval‘;;

load_theorems ‘threeval‘;;

From micro_def

213

let load_micro_inst = (A\x. theorem ‘micro_def‘ x);;

let instructions = map load_micro_inst

let micro_inst_list = definition ‘micro_def‘ ‘micro_inst_list‘;;
let GetMPC = definition ‘micro_def’ ‘GetMPC‘;;
let PhaseCycles = definition ‘micro_def¢ ‘PhaseCycles‘;;

let add_bt7 = definition ‘micro_def’ ‘add_bt7;;

Y=

214

[‘FETCH_ul‘ ; ‘FETCH_u2‘ ; ‘FETCH_u3‘ ; ‘FETCH_u4‘ ;
“IJMP_reqm‘ ; ‘JMP_opc‘ ; ‘NOOP‘ ; ‘SHRS_ul‘ ;
‘SHRB_u1® ; ‘SHLB_ui‘ ; ‘AXY_WRITE¢ ; ‘SHLS ui;
‘NO_OVL® ; ‘NOOP‘ ; “AXY_WRITE® ; ‘SHRS_u2°‘ ';
‘NOOP* : ‘AXY_WRITE‘ ; ‘SHRB_u2‘ ; ‘NOOP* ;
‘AXY_WRITE‘ ; ‘SHLB_u2‘ ; ‘NOOP ¢ ‘MFO_ul‘ ;
‘MF1_utl‘ ;

‘MF2_ul‘ ; ‘MF3_ul‘ ; ‘MF3_u2‘ ‘FETCH_u3*
‘MF3_ud4® : ‘MF3_u5‘¢ ; ‘MF3_uéwl‘ ; ‘MF3_ulwd' ;
‘MF3_u6‘ ; ‘MF3_u4‘ ; ‘MF3_u5w3‘ ; ‘MF3_u6‘ ;
‘MF3_ul® ; ‘MF2_u3‘ ; ‘FETCH_u3‘ ; ‘MF3_u4‘ ;
‘MF3_uS‘ ; ‘MF3_u6‘ ; “COMPARE_ul‘ ; ‘WRITEMEM_ ui‘ ;
‘WRITEIO_ut‘ ; °‘NEG_ui‘ ; ‘CALL_ul‘ ; ‘READIO_ulf
‘READMEM_u1l‘ ; ‘ADDB_ul’ “ADDS_ul‘ ; ‘SUBB_ul‘ ;
‘SUBS_ul‘ ; ‘XOR_ul® ‘AND_ut‘ ; ‘NOR_ul’ ;
¢ANDMBAR_ul‘ ; ‘NOOP‘ “COMPARE_u2‘ ; ‘NOOP¢
‘WRITEMEM_u2‘ ‘NOOP* ; ‘WRITEID_u2‘ ; ‘NOOP?
‘AXY_WRITE® ‘NEGATE_u2‘ ; ‘NOOP¢ ; ‘CALL_u2‘
‘CALL_u3‘ ; ‘FETCH_u3‘ ; ‘NOOP‘ ; ‘READIO_u2‘ ;
‘MF3_uS‘ ; ‘READIO_u4‘ ; ‘NOQP‘ ; ‘READMEM_u2°

‘CK_VALID_PC‘ ; ‘NOOP‘ ; ‘ADDB_u2‘ ; ‘NOOP ¢ ;
¢ADDS_u2‘ ; ‘CK_VALID_PC‘; ‘NO_OVL‘; ‘NOOP¢ ;

‘SUBB_u2* ; i ,
‘NOOP® ; ‘SUBS_u2‘ ; ‘CK_VALID_PC® ; ‘NQ_OVL®
‘NOOP® ;

¢XOR_u2‘ ; °‘NOOP‘ ; ‘AND_u2‘ ; ‘NOOP* ;
‘NOR_u2‘ ; ‘NOOP‘ ; ‘wait_4°‘ ; ‘wait_3° ;
‘gait_2°¢ ; ‘wait_1’ ‘MF3_u6‘ ; ‘NOOP‘ ;
‘NOOP‘ ; ‘NOOP® ‘NOOP* ‘NOOP*

‘NOOP*‘ ; ‘NOOP* ; ‘NOOP‘ ; ‘NOOP‘

‘NOOP‘ ; ‘NOOP‘ ; ‘NDCP‘ ; ‘NOOP ¢

‘NOOP‘ ; ‘NOOP‘ ; °‘NOOP‘ ; ‘NOOP‘ ;

‘NOOP* ; ‘NOOP‘ ; ‘NOOP‘ ; ‘NOOP‘ ;

‘NOOP‘ ; °‘NOOP‘ ; ‘NOOP‘ ; ‘NOCP‘ ;

‘NQOP* J:;

From phase_def

let load_phase_inst = (\x. definition ‘phase_def‘ x);;

let phases = map load_phase_inst

[‘phase_one_def'; ‘phase_two_def‘; ‘phase_three_def‘];;
let PhaseClockBegin = definition ‘phase_def‘ ‘PhaseClockBegin‘;;
let Phase_Substate = definition ‘phase_def‘ ‘Phase_Substate‘:;
let GetPhaseClock = definition ‘phase_def‘ ‘GetPhaseClock‘;;
let Phase_l = theorem ‘phase‘ ‘PHASE_I‘;;
let cond3_def = definition ‘phase‘ ‘cond3_def‘;;
let cond3_lemma = theorem ‘phase‘ ‘cond3_lemma‘;;

let micro_rom_expanded = theorem ‘uinst*® ‘micro_rom_expanded‘;;

let A = definition ‘regs_def‘ ‘A‘;;
let X = definition ‘regs_def' ‘X‘;;
let Y = definition ‘regs_def‘ ‘Y‘;;
let P = definition ‘regs_def‘ ‘P¢;;
% e e e e e e e et e e e e e e e

The representation types

let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let I_rep_ty = abstract_type ‘gen_I‘ ‘Impl‘;;

": ((#wordn)list#*vordn#*wordn#svordn#+wordn#
*memory#bool#bool#bool#*address#*wordn#tbt7)";;

let micro_state

let micro_env = ":bool";:

let Phase_state
":(*wordn)list # *vordn # *wordn # *wordn # *wordn # *memory ¥ bool #

bool # bool # »address # =wordn # bt7 # ucode # (num -> ucode) ¥
*wordn # »wordn # bool # bool # bool"::

let Phase_env = ":bool";;

== e e ——— —_——

Intermediate theorem needed for rewriting
let ZERO_NEQ_SUC = theorem ‘micro_auxF ‘ZERO_NEQ_SUC*;;

215

let ZERO_NEQ_SUC = prove_thn(
‘ZERO_NEQ_SUC‘,
"in. (0 = SUC n)",
GEN_TAC THEN REWRITE_TAC[REWRITE_RULE[LESS_0]
(SPECL ["0"; "SUC n"] LESS_NOT_EQ)]
)i

% e e e e 4 e T e e o e T e e o e

Define the micro level interpeter in terms of the generic

interpreter definition.
let Micro_I_def = definition ‘micro_aux‘ ‘Micro_I_def‘;;
let Micro_I = theorem ‘micro_aux‘ 'Micro_I‘;;
let Micro_I_IMPL_IMPL_DEF = definition ‘micro_aux‘ ‘Micro_I_IMPL_IMPL_DEF‘;;

----- 4

let Micro_I_def = new_definition
(‘Micro_I_def‘,
"t (rep: rep_ty) (s:time->"micro_state) (e:time->"micro_env)
Micro_I rep s e =
INTERP
(micro_inst_list rep,
bt7_val,
(GetMPC: "micro_state -> “micro_env -> bt7),
(PhaseCycles:bt7->num),
(Phase_Substate: "Phase_state ~> “micro_state),
(I:"Phase_env ->"micro_env),
Phase_I rep,
(GetPhaseClock: "Phase_state -> ~Phase_env -> triple),

PhaseClockBegin, @x:one.F) s e”

)i

let Micro_I = save_thm
(‘Micro_I¢,
ONCE_REWRITE_RULE [GetMPC] (

BETA_RULE (
EXPAND_LET_RULE
(instantiate_abstract_definition ‘gen_I‘ ‘INTERP‘ Micro_I_def)))

)5

let Micro_I_IMPL_IMPL_DEF = new_definition
(‘Micro_I_IMPL_IMPL_DEF‘,

216

"1 (rep:-rep._ty) (s:time->"Phase_state) (e:time->"Phase_env)
Micro_I_IMPL_IMP rep s e =
IMPL_IMP
(micro_inst_list rep,
bt7_val,
(GetMPC: "micro_state -> “micro_env -> bt?),
(PhaseCycles:bt7->num),
(Phase_Substate: Phase_state -> “micro_state),
(I:"Phase_env ->"micro_env),
Phase_I rep,
(GetPhaseClock: "Phase_state -> "Phase_env —> triple),
PhaseClockBegin, @x:one.F) s e"

)i

let Micro_I_IMPL_IMP =
let Micro_I_EXT =
CONV_RULE (TOP_DEPTH_CONV FUN_EQ_CONV) Micro_I_IMPL_IMPL_DEF in

(REWRITE_RULE [I_THM] (

BETA_RULE (

EXPAND_LET_RULE (

instantiate_abstract_definition

‘gen_I'

‘IMPL_IMP®
Micro_I_EXT))));;

map (delete_cache o fst) (cached_theories());;

%

letrec term_list_eln 1 = (
let tm_hd x = rand(fst(dest_comb x)) and
tm_tl x = snd(dest_comb x) in
if (n = 0) then tom_hd 1 else
term_list_el (n-1) (tm_tl 1)) 7
failwith ‘term_list_el‘;;

let EL_CONV tm = (
let ({(c,n),1) = ((dest_comb¥#I)o dest_comb) tm in

let n_int = term_to_int n in
mk_thm([],""tn = “(term_list_el n_int n"y ?

failwith ‘EL_CONV®;;

217

let is_SND_term t =
if is_comb t then
fst(dest_const(fst(strip_comb t))) = ‘SND*

else
false;;

let SND_CONV t =
if is_SND_term t then
let op,pr = dest_comb t in
let op,[t1;t2] = strip_comb pr in
SPECL [t1;t2] (
INST_TYPE [((type_of t1),":%");
((type_of t2),":%»")] SND)

else
failwith ‘SND_CONV';;

let TPLUS3LEMMA = TAC_PROOF
(11,
. (843) = (((t+ 1) + 1) + 1)),
STRIP_TAC THEN
CONV_TAC (TOP_DEPTH_CONV num_CONV) THEN
REWRITE_TAC[ADD_CLAUSES]
VHH

let Phase_I_SPEC =
PURE_ONCE_REWRITE_RULE [GetPhaseClock] (
BETA_RULE (
SPECL ["rep:-rep_ty";
"(\t.(regs t, mreg t, insreg t, din t, dout t, ram t,
bt, stopt, ovl t, mar t, res f, mpc't, mir t, micro_rom,
rlatch t, mlatch t, phl t,ph2 t, ph3 t)):time->"Phase_state';

"(\t. (reset t)):time->"Phase_env"] Phase_1));;

let MK_Phase_I_Inst_LEMMA inst =
let clk_term =

((inst = 1) => "stop t = T" |
(inst = 2) => "phl1 t = T" |
(inst = 3) => "ph2 t = T" |

"ph3 t = T") in

let clk_lemma
REWRITE_RULE [] ¢
SUBS [ASSUME clk_term] (

SPEC "t" (
ASSUME

218

"tt. (stop t ==> “phl t /\ “ph2 t /\ “ph3 t) /\

(phl t = “stop t /\ "ph2 t /\ “ph3 t) /\
{(ph2 t = “stop t /\ “phl t /\ “ph3 t) /\
(ph3 t = “stop t /\ “phil t /\ “ph2 t)"))) in
DISCH_ALL (
GEN "t" (

ONCE_REWRITE_RULE[] (
DISCH clk_term (
SUBS [SPECL [“"rep:-rep_ty";

"regs t:(#*wordn)list";

"mreg t:*wordn";

"insreg t:*wordn";

"din t:#*wordn";

""dout t:=*wordn';

"ram t:*memory";

"b t:bool";

({inst=1) => "T"|"F");

"ovl t:bool";

"mar t:*address’;

"res t:s*wordn";

"mpe t:bt7";

"mir t:ucode'';
"micro_rom:num->ucode’;
"rlatch t:*wordn";
"mlatch t:*wvordn";
((inst=2) => "T"|"F");
((inst=3) => "T"|"F");
((inst=4) => "T"|"F");

"reset t:bool"] (el (inst=1 => inst | (inst-1)) phases)] (

CONV_RULE (DEPTH_CONV SND_CONV) (
CONV_RULE (ONCE_DEPTH_CONV EL_CONV) (

REWRITE_RULE [triple_VALUE_LEMMA] (SUBS[ASSUME clk_term] (

REWRITE_RULE (CONJUNCTS (clk_lemma)) (
SPEC_ALL (
SUBS [Phase_I_SPEC] (
ASSUME
"Phase_I (rep:“rep_ty)

(\t. (regs t, mreg t, insreg t, din t, dout t, ram t,
b t, stopt, ovl t, mar t, res t, mpc t, mir t, micro_rom,

rlatch t, mlatch t, phi t, ph2 t, ph3 t))

(\t. (reset £))N)NNMIN;;

let Phase_I_Inst_list = map MK_Phase_I_Inst_LEMMA [1;2;3;4];;

let Micro_IMPL_IMP_LEMMA =

REWRITE_RULE [GetPhaseClock; Phase_Substate;PhaseClockBegin;GetMPC;

219

PhaseCycles] (

BETA_RULE (

SPECL ["rep: “rep_ty";

"(\t. (regs t, mreg t, insreg t, din t, dout t, ram t,
bt, stopt, ovl t, mar t, res t, mpc t, mir t, micro_rom,
rlatch t, mlatch t, phl t,
ph2 t, ph3 t)):time->"Phase_state";

"(\t. (reset t)):time->"Phase_env"]

Micro_I_IMPL_IMP));;

let MK_IMPL_IMP_GOAL n =
let inst = term_list_eln
(snd(dest_eq(
snd(dest_forall{concl micro_inst_list))))) in
"i(rep:"rep_ty) (regs:time->(xwordn)list)
(mreg insreg din dout:time->*wordn) (ram:time->*memory)
(b stop ovl:time->bool) (mar:time->»address) (res:time->+wordn}
(mpc:time->bt7) (mir:time->ucode) (rlatch mlatch:time->*wordn)
(ph1 ph2 ph3:time->bool) (reset:time->bool).
(1t.
(stop t ==> “ph1 t /\ “ph2 t /\ “ph3 t) /\
(phl t = “stop t /\ “ph2 t /\ “ph3 t) /A
(ph2 t = “stop t /\ “phl t /\ "ph3 t) /A
(ph3 t = “stop t /\ “phl t /\ “ph2 t)) ==>’
Micro_I_IMPL_IMP rep
(\t. (regs t, mreg t, insreg t, din t, dout t, ramt,
bt, stopt, ovl t, mar t, res t, mpc t, mir t, micro_rom,
rlatch t, mlatch t, phl t, ph2 t, ph3 t))
(\t. (reset t)) “inst";;

let SPEC_SELECTOR x thm =
let inst = snd(dest_eq x) in
let (addr,seqalu,dec,mem,srcdst,en,sel) =
(I# (1# (I (I# (I#dest_pair))))) (
(I# (1% (I# (I# dest_pair)))) (
(I # (I8 (I% dest_pain))) (
(I # (I # dest_pair)) (
(I # dest_pair) (
(dest_pair inst)))))) in
let (seq,alu) = (dest_pair seqalu) in
let (r,v,io) =
(I # dest_pair) (
(dest_pair mem)) in

let (mrf, mdf, rfc,dfc) =

220

(I # (I # dest_pair)) (
(I # dest_pair) (
(dest_pair srcdst))) in
let (de,re) = dest_pair en in
let (adrs,ds,ms) =
(I # dest_pair) (

(dest_pair sel)) in

SPECL [r;v;io;decirfc;dfc;de;re;adrs;ds;mrf;ms;seq;mndf;alu;addr] thm;;

let SPEC_ALL_SELECTORS x =
map (SPEC_SELECTOR x)

[Maddr;Seqctl;Aluctl;Dec_ctl;R;W;Io;Mrf;Mdf;Rfc;Dfc; De;Re;Adrs;Ds;Ms];;

map (delete_cache o fst) (cached_theories());;

let IMPL_IMP_TAC n =
let inst = term_list_el n
(snd(dest_eq(
snd(dest_forall(concl micro_inst_list))})) in
let thm = el (n+1) instructions in
let find_Phase_I_term tm = (
let ((x,y),z) = ((dest_comb # I)
(dest_comb tm)) in
(x = "Phase_I (rep:-rep_ty)")) ? false in (
REPEAT STRIP_TAC
THEN SUBST_TAC [SPEC inst Micro_IMPL_IMP_LEMMA]
THEN REWRITE_TAC [thm]
THEN SUBST_TAC[A;X;Y;P]
THEN STRIP_TAC THEN STRIP_TAC THEN STRIP_TAC
THEN POP_ASSUM(\thm. STRIP_ASSUME_TAC (MULTI_MP

(CONJUNCTS (SPECL ["(ph2't):bool"; "(ph3 t):bool"]
(REWRITE_RULE [cond3_def] cond3_lemma))) thm))

THEN COND_CASES_TAC
THEN POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE[] thm))
THENL [
ASSUM_LIST(\asl. ASSUME_TAC (
REWRITE_RULE[(el 1 asl); (el 2 asl); (el 3 asl)]
(SPEC_ALL (el 6 asl))))
THEN ASSUM_LIST (\x. MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE [PAIR_EQ] (
(\y. MP y (el 2 x)) (
SPEC "t:time" (
(\y. MP y (e 7 1)) (
MATCH_MP (el 1 Phase_I_Inst_list)

(hd (filter (find_Phase_I_term o concl) x)))))))))

221

222

THEN ASSUM_LIST (\x. MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE [PAIR_EQ] (
(\y. MP y (el 11 x)) (
SPEC "t+1" (
(\y. MP y (el 25 x)) (
MATCH_MP (el 1 Phase_I_Inst_list)
(hd (filter (find_Phase_I_term o concl) x)))))))))
THEN ASSUM_LIST (\x. MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE {PAIR_EQ] (
(\y. MP y (el 11 x)) (
SPEC "(t+1)+1" (
(\y. MP y (el 43 x)) (
MATCH_MP (el 1 Phase_I_Inst_list)
(hd (filter (find_Phase_I_term o concl) x)))))))))
THEN PURE_ONCE_REWRITE_TAC([TPLUS3LEMMA]
THEN ASM_REWRITE_TAC {]

ASSUM_LIST(\asl. ASSUME_TAC (
REWRITE_RULE[(el 1 asl); (el 2 asl); (el 3 asl)]
(SPEC_ALL (el 6 asl))))
THEN ASSUM_LIST (\x. MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE [PAIR_EQ] (
SUBS [CONV_RULE (QONCE_DEPTH_CONV EL_CONV) (
SPEC (int_to_term n) micro_rom_expanded)] (
CONV_RULE (ONCE_DEPTH_CONV bt7_val_CONV) (
SUBS [el 5 x] (
(\y. MP y (el 1 x)) (
SPEC "t:time" (
(\y. MP y (el 7 xJ) (
MATCH_MP (el 2 Phase_I_Inst_list)
(hd (filter (find_Phase_I_term o concl) x)))}))))))))
THEN ASSUM_LIST (\x. MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE [PAIR_EQ] (
SUBS (SPEC_ALL_SELECTORS (concl (el 6 x))) (
SUBS [el 6 x] (
(\y. MP y (el 2 x)) (
SPEC "t+1" (
(\y. MP y (el 25 x)) (
MATCH_MP (el 3 Phase_I_Inst_list)
(hd (filter (find_Phase_I_term o concl) x)))})))))))
THEN ASSUM_LIST (\x. if is_eq{concl(el 1 x})

then
(let (lhs, rhs) = dest_eq(concl(el 11 x)) in
(ASM_CASES_TAC rhs THENL [
POP_ASSUM (\thm.
(ASSUM_LIST (\x. ASSUME_TAC (REWRITE_RULE x thm))) THEN
ASSUME_TAC thm) THEN
ASSUM_LIST (\x. ASSUME_TAC
(REWRITE_RULE[el 1 x] (el 13 x))) THEN

ASSUM_LIST (\x.

(MAP_EVERY ASSUME_TAC (

CONJUNCTS (

REWRITE_RULE [PAIR_EQ] (

(\y. MP y (el 1 x)) (

SPEC "(t+1)+1" (

(\y. MP y (el 46 x)) (

MATCH_MP (el 1 Phase_I_Inst_list)

(hd (filter

(find_Phase_I_term o concl) x)))))))))) THEN

PURE_ONCE_REWRITE_TAC[TPLUS3LEMMA] THEN
ASM_REWRITE_TAC []

»

POP_ASSUM (\thm. ASSUME_TAC(REWRITE_RULE[] thm)) THEN
POP_ASSUM (\thm.
(ASSUM_LIST (\x. ASSUME_TAC (REWRITE_RULE x thm))) THEN
ASSUME_TAC thm) THEN
ASSUM_LIST (\x. ASSUME_TAC
(REWRITE_RULE[el 1 x] (el 3 x))) THEN
ASSUM_LIST (\x.
(MAP_EVERY ASSUME_TAC (
CONJUNCTS (
REWRITE_RULE [PAIR_EQ] (
SUBS (SPEC_ALL_SELECTORS (concl (el 9 x))) (
SUBS [el 9 x] (
(\y. MP y (el 1 x)) (
SPEC "(t+1)+1" (
(\y. MP y (el 46 x)) (
MATCH_MP (el 4 Phase_I_Inst_list)
(hd (filter
(find_Phase_I_term o concl) x)))))))))))) THEN
PURE_ONCE_REWRITE_TAC[TPLUS3LEMMA] THEN
if n=4 then
(ASM_REWRITE_TAC[add_bt7] THEN
COND_CASES_TAC
THEN ASSUM_LIST(\asl. ASSUME_TAC (
ONCE_REWRITE_RULE [DE_MORGAN_THM] (el 22 asl)))
THEN POP_ASSUM(\thm. REWRITE_TAC[thm]))

223

else ASM_REWRITE_TAC (add_bt7]
m

else
(MAP_EVERY ASSUME_TAC (

CONJUNCTS (

REWRITE_RULE [PAIR_EQ] (

SUBS (SPEC_ALL_SELECTORS (concl (el 6 x))) (

SUBS [el 6 x] (

(A\y. MP y (el 1 x)) (

SPEC "(t+1)+1" (

(\y. MP y (el 43 x)) (

MATCH_MP (el 4 Phase_I_Inst_list)

(hd (filter (find_Phase_I_term o concl) x))))))))))

THEN PURE_ONCE_REWRITE_TAC[TPLUS3LEMMA] THEN

ASM_REWRITE_TAC [] THEN

REWRITE_TAC[P; bt2_val; bt3_val]l THEN

CONV_TAC (TOP_DEPTH_CONV num_CONV) THEN

REWRITE_TAC [ZERO_NEQ_SUC; NOT_SUC; INV_SUC_EQ; add_bt7]))
DR

let PROVE_IMPL_IMP_LEMMA n = (
TAC_PROOF (([],
MK_IMPL_IMP_GOAL n),
IMPL_IMP_TAC n));;

let SAVE_INST_LEMMA n =

let name = (concat ‘INST_‘ (string_of_int n)) in

save_thm(name,PROVE_IMPL_IMP_LEMMA n);;
map (delete_cache o fst) {(cached_theories());;

letrec mk_num_list nm =
if n = m then [m] else

(n . (mk_num_list (n+1) m));;

The microinstructions be proved and the resulting

theorems will be saved. The theorems for microinstruction n
will be saved under the name INST_n

map SAVE_INST_LEMMA (mk_num_list 0 15);;

map (delete_cache o fst) (cached_theories());;

map SAVE_INST_LEMMA (mk_num_list 16 31);;

map (delete_cache o fst) (cached_theories());;

224

map SAVE_INST_LEMMA (mk_num_list 32 47);;

map (delete_cache o fst) (cached_theories());;
map SAVE_INST_LEMMA (mk_num_list 48 63);;

map (delete_cache o fst) (cached_theories());;
map SAVE_INST_LEMMA (mk_num_list 64 79);;

map (delete_cache o fst) (cached_theories());;
map SAVE_INST_LEMMA (mk_num_list 80 95);;

map (delete_cache o fst) (cached_theories());;
map SAVE_INST_LEMMA (mk_num_list 96 1115
map (delete_cache o fst) (cached_theories())};
map SAVE_INST_LEMMA (mk_num_list 112 127) 5

map (delete_cache o fst) (cached_theories());;

close_theory();;

225

0/' ___
File: mk_micro.ml

Description: Uses the individual correctness lemmas for each
micro instruction from micro_aux.th to prove the
instruction correctness lemma and complete the

Phase to Micro level proof.

set_search_path (search_path() € lib_dir_list);;
loadf 'abstract‘;;

% this definition isn’t in abstract yet ¥%
let TAC_PROOF : (goal # tactic) -> thm =
set_fail _prefix ‘TAC_PROOF‘
(\(g,tac).
let new_g = ((fst g) @ theory_obligation_list,snd g) in
let gl,p = tac new_g in
if null gl then p(]
else (
message (‘Unsolved goals:‘);
map print_goal gl;
print_newline();

failwith ‘unsolved goals‘));;
system ‘/bin/rm micro.th';;
new_theory ‘micro‘;;
map loadf [‘tuple‘];;
map nev_parent [‘micro_aux‘; ‘threeval‘];;
load_definitions ‘threeval‘;;
load_theorems ‘threeval‘:;
map (delete_cache o fst) (cached_theories());;

let mk_inst_list n =
letrec mk_inst_list_aux n m =
let thm x = (theorem ‘micro_aux‘ (concat ‘INST_‘ (string_of_int x)))
in
if n = m then [thm m] else
((thm n) . (mk_inst_list_aux (n+1) m)) in
mk_inst_list_aux 0 n;;

let inst_lemma_list = (mk_inst_list 127);;

226

let Micro_I_def = definition ‘micro_aux‘ ‘Micro_I_def‘;;
let Micro_I = theorem ‘micro_aux‘ ‘Micro_I‘;;
let Micro_I_IMPL_IMPL_DEF = definition ‘micro_aux‘ ‘Micro_I_IMPL_IMPL_DEF‘;;

let Micro_I_IMPL_IMP =
let Micro_I_EXT =
CONV_RULE (TOP_DEPTH_CONV FUN_EQ_CONV) Micro_I_IMPL_IMPL_DEF in
(REWRITE_RULE [I_THM] (
BETA_RULE (
EXPAND_LET_RULE (
instantiate_abstract_definition
‘gen_If
‘IMPL_IMP¢
Micro_I_EXT))));:

let micro_inst_list = definition ‘micro_def‘ ‘micro_inst_list‘;;
let micro_rom = definition ‘uinst‘ ‘micro_rom‘;;

map (delete_cache o fst) (cached_theories());;

let Phase_Substate = definition ‘phase_def‘ ‘Phase_Substate’;;
let GetPhaseClock = definition ‘phase_def‘ ‘GetPhaseClock’;;

let PhaseClockBegin = definition ‘phase_def‘ ‘PhaseClockBegin‘;;

let Phase_I = theorem ‘phase‘ ‘PHASE_I‘;;

let rep_ty = abstract_type ‘aux_def’ ‘opcode‘;;

let I_rep_ty = abstract_type ‘gen_I‘ ‘Impl‘;;

let micro_state = ":((*wordn)list#*wordn#*wordn¥*vordn#*vordn#
*memory#bool#boolitbool#*addressi*wordnitbt?)";;

"

let micro_env = ":bool";;

let phase_state
":(xgordn)list # *wordn # »wordn # *wordn # *wordn ¥ *memory # bool #

bool # bool # *address # *wordn # bt7 # ucode # (num -> ucode) #
*wordn # *wordn # bool # bool # bool";;

227

let phase_env = ":bool";;

map (delete_cache o fst) (cached_theories());;

Some ML function for the inference rules that follow.

———— -— e e e e o et o e o e e o Y%

letrec term_list_eln 1 = (
let tm_hd x = rand(fst(dest_comb x)) and
tm_tl x = snd(dest_comb x) in
if (n = 0) then tm_hd 1 else
term_list_el (n-1) (tm_tl 1)) ?

failwith ‘term_list_el’;;

Ymmmmm e e e e e — e m e o e e o ——— ———

This is insecure for right now, but it is reasonably simple

______ ——— — _’/.

let EL_CONV tm = (
let ({c,n),1) = ((dest_comb#I)o dest_comb) tm in
let n_int = term_to_int n in
mk_thm([]," tm = ~“(term_list_el n_int 1)) 7
failwith ‘EL_CONV‘;;

let Micro_I_CORRECT_LEMMA_AUX = TAC_PROOF
«aa,
“1(rep: “rep_ty) (regs:time->(*vordn)list)
(mreg insreg din dout:time->*wordn) (ram:time->smemory)
(b stop ovl:time->bool) (mar:time->*address) (res:time->»wordn)
(mpc:time->bt7) (mir:time->ucode) (urom:num->ucode)
(rlatch mlatch:time->*wordn) (phl ph2 ph3:time->bool)
(reset:time->bool).
('t.
(stop t ==> “phi t /\ “ph2 t /\ “ph3 t) /\
(ph1 t = “stop t /\ “ph2 t /\ “ph3 t)} /\
(ph2 t = “stop t /\ "phl t /\ "ph3 t) /\
(ph3 t = “stop t /\ “pht t /\ "ph2 t)) ==>
EVERY (Micro_I_IMPL_IMP rep

(\t.
(regs t,mreg t,insreg t,din t,dout t,ram t,b t,stop t,

ovl t,mar t, res t,mpc t,mir t,micro_rom,rlatch t,mlatch t,
phi t,ph2 t,ph3 t))

(\t. reset t)) (micro_inst_list rep)"),

228

REWRITE_TAC [EVERY_DEF;micro_inst_list]

THEN REPEAT STRIP_TAC

THEN POP_ASSUM (\asl. MP_TAC asl)

THENL (map MATCH_ACCEPT_TAC inst_lemma_list)

)

let Micro_I_CORRECT_LEMMA = (
UNDISCH_ALL (
SPEC_ALL (
PURE_ONCE _REWRITE_RULE [Micro_I_IMPL_IMPL_DEF]
Micro_I_CORRECT_LEMMA_AUX)))::

save_thm(‘Hicro_I_CORRECT_LEMMA‘,Micro_I_CORRECT_LEMMA);;

let Micro_I_LENGTH_LEMMA = TAC_PROOF
a3,
"! mpc. bt7_val mpc < (LENGTH (micro_inst_list (rep:“rep_ty)))™),
REPEAT GEN_TAC
THEN REWRITE_TAC [micro_inst_list;LENGTH]
THEN STRUCT_CASES_TAC (SPEC "mpc:bt7" SEVEN_TUPLE_VALUE_LEMMA)
THEN CONV_TAC (DEPTH_CONV bt7_val_CONV)
THEN CONV_TAC (TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC [LESS_0;LESS_MONO_EQ]
)i

save_thm(‘Micro_I_LENGTH_LEMMA‘,Micro_I_LENGTH_LEMMA);;

map (delete_cache o fst) (cached_theories())::

let Micro_I_ORDER_LEMMA = TAC_PROOF
11,
"!mpc:bt? . mpc = (FST (EL (bt7_val mpc)
(micro_inst_list (rep: rep_ty))))"),
REPEAT GEN_TAC
THEN SUBST_TAC [SPEC "rep:“rep_ty" micro,inst_list]
THEN STRUCT_CASES_TAC (SPEC "mpc:bt7" SEVEN_TUPLE_VALUE_LEMMA)
THEN CONV_TAC (ONCE_DEPTH_CONV bt7_val_CONV)
THEN CONV_TAC (ONCE_DEPTH_CONV EL_CONV)
THEN REWRITE_TAC []
Yss

229

Y -
let Micro_I_ORDER_LEMMA = mk_thm([],
“igpc:bt7? . mpc = (FST (EL (bt7_val mpc) (micro_inst_list (rep: rep_ty))))"

)i

-— %
save_thn(‘Hicro_I_ORDER_LEHHA‘,Hicro_I_URDER_LEHHA);:
map (delete_cache o fst) (cached_theories());;

let theorem_list = instantiate_abstract_theorems ‘gen_I°
[Micro_I_CORRECT_LEMMA;
Micro_I_LENGTH_LEMMA;
Micro_I_ORDER_LEMMA]
{
("rep:“I_rep.ty",
"(micro_inst_list (rep: rep_ty),
bt7_val,
GetMPC: "micro_state->"micro_env->bt7,
Phase_Substate: “phase_state->"micro_state,
(I:"phase_env->"micro_env),
Phase_I rep,
GetPhaseClock: “phase_state->"phase_env->triple,
PhaseClockBegin:triple,0x:one.F)");
("e’:time’~>%*env’",
n(\t:time. (reset t):bool)");
("a’:time->#state’",
“(\t. (regs t, mreg t, insreg t, din t, dout t, ram t, .
bt, stopt, ovl t, mar t, res t, mpc t,
mir t, urom, rlatch t, mlatch t, pht t,
ph2 t, ph3 t)):time->"phase_state")

]
‘MICRO';;

let correct_lemma = snd(hd theorem_list);;

let PHASE_IMPL_MICRO_LEMMA = save_thm
¢ ‘PHASE_IMPL_MICRO_LEMMA®,
BETA_RULE (
EXPAND_LET_RULE (
DNCE_REWRITE_RULE [Phase_Substate;I_THH;GetPhaseClock;PhaseClockBegin] (
BETA_RULE (
ONCE_REWRITE_RULE [SYM_RULE Micro_I_def] correct_lemma))))
)5

close_theory();;

230

Appendix F: MICROCODE

For All Instructions

Cycle uCode uLoc Comment
t fetch_ul 0 fetch macro instruction
t+1 fetchu? 1 increment pc
t+2 fetchud 2 invalid address (> 20 bits)?
t+3 fetchud 3 ir « macro instruction
t+4 jmpreqm 4 require memory?
If no memory fetch is required
t+5 jmp.opc 5 jump to noop+instruction number
If a memory fetch is required
Addressing mode: IMMEDIATE
Cycle uCode uLoc Comment
t+5 MF0.ul 23 Jump to immediate addr mode fetch
t+6 MF3ulws 32 jump to wait 4
t+7 wait4 97 idle
t+8 waitl 98 idle
t+9 wait2 99 idle
t+10 waitl 100 idle
t+11 MF3_u6 101 jump to base+instruction number

231

Addressing mode: INDIRECT

Cycle uCode uLoc Comment

t+5 MFl.ul 24 jump to indirect addr mode fetch
t+6 MF3.u4 34 get word from memory

t+7 MF3u5w3 35 read word into m and jump to wait 3
t+8 waitd 98 idle

t+9 wait2 99 idle

t+ 10 waitl 100 idle

t+11 MF3.u6 101 jump to base+instruction number

Addressing mode: INDEXED with x

Cycle uCode uLoc Comment

t+5 MF2ul 25 jump to indexed-x addr mode fetch
t+6 MF3ul 37 m « instruction operand

t+7 MF2u2 38 addr — m + x

t+8 fetch.u3d 39 invalid address (> 20 bits)?

t+9 MF3.ud4 40 get word from memory

t+10 MF3u5 41 read word into m

t+11 MF3.u6 42 jump to base+instruction number

Addressing mode: INDEXED with y

Cycle uCode uLoc Comment

t+5 MF3.ul 26 m — instruction operand

t+6 MF3.u2 27 addr — m + y

t+7 fetch.u3 28 invalid address (> 20 bits)?

t+8 MF3u4 29 get word from memory

t+9 MF3ud 30 read word into m

t+10 MF3_ubwl 31 jump to wait_0 (MF3_u6)

t+11 MF3_u6 101 jump to base+instruction number

232

Individual Instructions

Instruction: NOOP # 0

Cycle uCode uLoc Comment

t+6 NOOP 6 jump to fetch next macro instruction
Instruction: SHRS # 1

Cycle uCode uLoc Comment

t+6 SHRS_ul 7 jump to shrs code

t+7 AXY_WRITE 14 destination must be register A, X or Y

t+8 SHRS_u2 15 shr operation

t+9 NOOP 16 jump to fetch next macro instruction
Instruction: SHRB # 2

Cycle uCode uLoc Comment

t+6 SHRB_ul 8 jump to shrb code

t+7 AXY_WRITE 17 destination must be register A, Xor Y

t+8 SHRB_u2 18 shrb operation

t+9 NOQOOP 19 Jjump to fetch next macro instruction
Instruction: SHLB # 3

Cycle uCode uLoc Comment

t+6 SHLB_ul 9 jump to shlb code

t+7 AXY_WRITE 20 destination must be register A, X or Y

t+8 SHLB_u2 2] shlb operation

t+9 NOOP 22 Jjump to fetch next macro instruction
Instruction: SHLS # 4

Cycle uCode uLoc Comment

t+6 AXY_WRITE 10 destination must be register A, X or Y

t+7 SHLS.ul 11 shls operation

t+8 NO.OVL 12 result must not overflow

t+9 NOOP 13 jump to fetch next macro instruction

233

Instruction: CMP # 5

Cycle uCode uLoc Comment

t+12 COMPARE.ul 43 jump to compare code

t+ 13 bemp 59 compare operation

t+14 NOOP 60 jump to fetch next macro instruction

Instruction: WRITEM # 6

Cycle uCode uLoc Comment

t+ 12 writemem_ul 44 jump to writem code

t+ 13 writemem_u2 61 write r to address

t+14 NOOP 62 jump to fetch next macro instruction
Instruction: WRITEIO # 7

Cycle uCode uLoc Comment

t+ 12 writeio.ul 45 jump to writeio code

t+ 13 writeio.u2 63 write r to address

t+14 NOOP 64 jump to fetch next macro instruction

Instruction: NEG # 8

Cycle uCode uLoc Comment

t+12 NEG.ul 46 jump to neg code

t+13 AXY.WRITE 65 destination must be register A, X or Y

t+14 NEG.u2 66

t+15 NOOP 67 jump to fetch next macro instruction

Instruction: CALL # 9

Cycle uCode uloc Comment

t+12 calllul 47

t+13 calllu2 68

t+ 14 calllu3 69

t+15 fetch.ud 70

t+16 NOOP 71 jump to fetch next macro instruction

234

Instruction: READIO # 10

Cycle uCode uLloc Comment
t+ 12 readio.ul 48
t+ 13 readio.u2 72
t+ 14 mf3.ub 73
t+ 15 readio.ud 74
t+16 NOOP 75 jump to fetch next macro instruction
Instruction: READM # 11
Cycle uCode uLoc Comment
t+ 12 readmem_ul 49
t+ 13 readio.ud 76
t+14 CK_.VALID.PC 77
t+15 NOOP 78 jump to fetch next macro instruction
Instruction: ADDB # 12
Cycle uCode uLoc Comment
t+12 ADDB.ul 50
t+13 ADDB.u2 79
t+14 NOOP 80 jump to fetch next macro instruction
Instruction: ADDS # 13
Cycle uCode uLoc Comment
t+12 ADDS.ul 51
t+13 ADDS.u2 81
t+14 CK_VALID.PC 82
t+15 NO.OVL 83
t+16 NOOP 84 jump to fetch next macro instruction
Instruction: SUBB # 14
Cycle uCode uloc Comment
t+12 SUBB.ul 52
t+13 SUBB.u2 85
t+14 NOOP 86 jump to fetch next macro instruction

235

Instruction: SUBS # 15

Cycle uCode uLoc Comment

t+ 12 SUBS._ul 53

t+ 13 SUBS.u2 87

t+ 14 CK_VALID_PC 88

t+15 NO.OVL 89

t+16 NOOP 90 jump to fetch next macro instruction
Instruction: XOR # 16

Cycle uCode uloc Comment

t+12 XOR.ul 54

t+13 XOR-u2 91

t+14 NOOP 92 jump to fetch next macro instruction
Instruction: AND # 17

Cycle uCode uloc Comment

t-12 AND.ul 55

t-13 AND.u2 93

t-14 NOOP 94 jump to fetch next macro instruction
Instruction: NOR # 18

Cycle uCode uloc Comment

t+12 NOR_ul 56

t+13 NOR-u2 95

t+ 14 NOOP 96 jump to fetch next macro instruction
Instruction: ANDMBAR # 19

Cycle uCode uLloc Comment

t+12 ANDMBAR.ul 57

t+13 NOOP 58 jump to fetch next macro instruction

236

Appendix G: SAMPLE MACRO TO MICRO LEVEL PROOF

let SHIFT_SYMB_EXEC1_TAC =
NORMAL_SYMB_EXEC 4 T4 THEN DELETE_USTEP_TAC 3
THEN NORMAL_SYMB_EXEC 5 TS5 THEN DELETE_USTEP_TAC 4
THEN NORMAL_SYMB_EXEC 6 T6 THEN DELETE_USTEP_TAC S
THEN JMPOPC_POP_ASSUM_TAC
THEN NEXT_SYMB_EXEC_TAC 7 THEN DELETE_USTEP_TAC 6
THEN ASM_CASES_TAC AXY_DSF_CASES
THEN POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE [DE_MORGAN_THM] thm));;

let SHIFT_BAD_DEST_TAC =
ASSUM_LIST(\asl. ASSUME_TAC(
REWRITE RULE (CONJUNCTS(el 1 asl)) DSF_CASES))
THEN ASSUM_LIST(\asl.
IMP_RES_TAC (el (mpc_from_thm (el 3 asl)+1) Micro_Int_Inst_list))
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm. POP_ASSUM(\thmi.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ;T8] @ (subtract asl[thm])) thm))))))
THEN DELETE_USTEP_TAC 7
% The processor is now stopped due to an addressing exception Y
% specialize and revrite stop_thm show nothing will change ¥
THEN ASSUM_LIST(\asl.
let curTime = (term_to_int
(rand(rand(fst(dest_eq(snd(dest_thm(el 1 asl)))))))) in
let endTime =
(term_to_int (snd(dest_eq(snd(dest_thm (el 17 asl)))))) in
ASSUME_TAC(REWRITE_RULE [(el 1 asl); (el 5 asl) ; (el 21 asl);
(sumTHM curTime (endTime-curTime))]
(SPECL [(int_to_term (endTime - curTime }); (t_plus_term curTime)]
stop_thm)))
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ] @ (subtract asl{thm])) thm)))))
THEN DELETE_USTEP_TAC 8
THEN ASM_REWRITE_TAC [PAIR_EQ)
THEN REWRITE_TAC [update_reg; PAIR_EQ;EL_SET_EL];;

let SHIFT_GOOD_DEST_TAC1 =
ASSUM_LIST(\asl. ASSUME_TAC(REWRITE_RULE[(el 1 asl)] AXY_IMP1))
THEN ASSUM_LIST(\asl.
IMP_RES_TAC (el (mpc_from_thm (el 3 asl)+1) Micro_Int_Inst_list))
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm. POP_ASSUM(\thm1.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ;T8] ¢ (subtract asl{thm])) thm))))))

237

THEN NORMAL_POP_ASSUM_TAC

THEN DELETE_USTEP_TAC 7

THEN NEXT_SYMB_EXEC_TAC 9 THEN DELETE_USTEP_TAC 8
THEN NEXT_SYMB_EXEC_TAC 10 THEN DELETE_USTEP_TAC 9

let SHIFT_GOOD_DEST_TAC2 =
ASSUM_LIST(\asl. DISJ_CASES_TAC (el 14 asl))
THENL

[
EXPAND_REG_TAC
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THEN INDEPENDENCE_TAC INDEP_A_UPDATE1.

POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THEN EXPAND_REG_TAC
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THENL
[INDEPENDENCE_TAC INDEP_X_UPDATE1
INDEPENDENCE_TAC INDEP_Y_UPDATE1]
]
THEN ASM_REWRITE_TAC [] ;;

let SHIFTB_GOOD_DEST_TAC =
ASSUM_LIST(\asl. DISJ_CASES_TAC (el 14 asl))
THENL
[EXPAND_REG_TAC
THEN EXPAND_B_TAC
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THEN INDEPENDENCE_TAC INDEP_A_UPDATE1
POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THEN EXPAND_REG_TAC
THEN EXPAND_B_TAC
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THENL
[INDEPENDENCE_TAC INDEP_X_UPDATEL;
INDEPENDENCE_TAC INDEP_Y_UPDATE1

]
THEN ASM_REWRITE_TAC (] ;;

238

Y%=-=- —— -

max_print_depth 9;;
set_flag(‘print_asl_list‘,true);;
set_flag(‘print_asl_list‘,false);;
asl_print_list := [1];;
asl_print_list := [3;2;1];;

P 1
set_flag(‘print_asl‘,false);;
set_flag(‘print_gl‘,false);;
set_flag(‘print_gl‘,true);;
set_flag(‘shov_types‘, false);;
fst(dest_eq(snd(dest_thm(SPEC1_EL_COND_THM))));;

loadf ‘/usr/csgrad/schubert/bin/init‘;;

max_print_depth 9;;

system ‘/bin/rm new_shift.th‘;;

new_theory ‘new_shift‘;;

loadf ‘goals.ml‘;;

loadf ‘stack.ml‘;;

set_search_path (search_path() ¢ [‘./theories/‘; 1);;

% loadf ‘../vinst/inst_aux.ml‘;; %

loadf ‘../vinst/mk_mac.ml‘;;
loadf ‘../vinst/new_inst_aux.ml‘;;

loadf ‘../vinst/new_shift_aux.ml‘;;

map (delete_cache o fst) (cached_theories());;

hm— e e e o e e o e

from oxalis:

Run time: 2719.9s
Run time: 880.2s
Run time: 979.8s
Run time: 1177.5s

239

Run time: 14550.3s (combined steps)

first time on chugjug:

Run time: 1838.6s
Run time: 632.8s
Run time: 707.8s
Run time: 952.1s
Run time: 786.5s
missing last step

Second time with improved last step:

Run time: 1997.1s Intermediate thecrems generated: 73834
Run time: 652.6s Intermediate theorems generated: 20908
Run time: 748.7s Intermediate theorems generated: 28525
Run time: 1011.2s Intermediate theorems generated: 26480
Run time: 804.8s Intermediate theorems generated: 29003

Run time: 4029.7s Intermediate theorems generated: 115876

9244.1s/154.07m/2.6h thms generated 294627 32thms/sec

-- %

Ymmmm e —— ————

PROVE SHR instruction
On American:

Run time: 915.7s Intermediate theorems generated: 67117
Run time: 93.9s Intermediate theorems generated: 3905
Run time: 395.8s Intermediate theorems generated: 28853
Run time: 379.9s Intermediate theorems generated: 23540
Run time: 419.4s Intermediate theorems generated: 29521

Run time: 1528.5s Intermediate theorems generated: 95274
Run time: 3337.4s/55.6m thms generated: 248210 74thns/sec

Run time: 3259.9s Intermediate theorems generated: 248202

pap (delete_cache o fst) (cached_theories(}));;
g(MK_INST_CORRECT_GOAL 1)i

e(FETCH_INST_TAC 1
THEN REWRITE_TAC{write_reg_expanded;load_r_expanded]
THEN SHIFT_SYMB_EXEC1_TAC
THENL
[SHIFT_BAD_DEST_TAC
;SHIFT_GOOD_DEST_TAC1
THEN SHIFT_GOOD_DEST_TAC2

240

PROVE SHRB instruction

On American:
Run time: 979.2s Intermediate theorems generated: 69555

Run time: 98.4s Intermediate theorems generated: 5828
Run time: 377.9s Intermediate theorems generated: 28853
Run time: 453.2s Intermediate theorems generated: 31757

Run time: 1840.6s Intermediate theorems generated: 114624

Run time: 3749.3s/62.5m thms generated 250617 67thms/sec

map (delete_cache o fst) (cached_theories());;
g{(MK_INST_CORRECT_GOAL 2);;

e(FETCH_INST_TAC 2
THEN REWRITE_TAC(write_reg_expanded;load_r_expanded]
THEN SHIFT_SYMB_EXEC1_TAC
THENL
[SHIFT_BAD_DEST_TAC
; SHIFT_GOOD_DEST_TAC1
THEN SHIFTB_GOOD_DEST_TAC

PROVE SHLB instruction

Run time: 1453.2s Intermediate theorems génerated: 103886
Run time: 406.9s Intermediate theorems generated: 25436

Run time: 2253.6s Intermediate theorems generated: 146380

Run time: 4113.7/68.7m thms generated 275702 67thms/sec

map (delete_cache o fst) (cached_theories());;
g(MK_INST_CORRECT_GOAL 3);;

e(FETCH_INST_TAC 3
THEN REHRITE_TAC[vrite_reg_expanded;load_r_expanded]
THEN SHIFT_SYMB_EXEC1_TAC
THENL
[SHIFT_BAD_DEST_TAC
; SHIFT_GODD_DEST_TAC1
THEN SHIFTB_GOOD_DEST_TAC

241

%= ——————— -

PROVE SHL instruction
The microcode for this instruction is different than the other
shift instructions and so, requires specialization of the tactics

Run time: 1484.8s Intermediate theorems generated: 106432

Run time: 457.5s Intermediate theorems generated: 28460
Run time: 568.1s Intermediate theorems generated: 40518
attempt 2:

Run time: 1205.8s Intermediate theorems generated: 98349
Run time: 374.1s Intermediate theorems generated: 24716
Run time: 550.9s Intermediate theorems generated: 40518
Run time: 1893.9s Intermediate theorems generated: ;30991

Run time: 24.2s Intermediate theorems generated: 706
Run time: 33.1s Intermediate theorems generated: 706
Run time: 78.3s Intermediate theorems generated: 838

Run time: 1972.3s Intermediate theorems generated: 136632

______ —— —— %

map (delete_cache o fst) (cached_theories());;
g(ME_INST_CORRECT_GOAL 4)i

e(FETCH_INST_TAC 4
THEN REWRITE_TAC{write_reg_expanded;load_r_expanded]
THEN NORMAL_SYMB_EXEC 4 T4 THEN DELETE_USTEP_TAC 3
THEN NORMAL_SYMB_EXEC 5 T5 THEN DELETE_USTEP_TAC 4
THEN NORMAL_SYMB_EXEC 6 T6é THEN DELETE_USTEP_TAC §
THEN JMPOPC_POP_ASSUM_TAC
THEN ASM_CASES_TAC AXY_DSF_CASES

THEN POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE (DE_MORGAN_THM] thm))

)i

% variation on SHIFT_BAD_DEST_TAC %
e(ASSUM_LIST{(\asl. ASSUME_TAC(
REWRITE_RULE (CONJUNCTS(el 1 asl)) DSF_CASES))
THEN ASSUM_LIST(\asl.

IMP_RES_TAC (el (mpc_from_thm (el 3 asl)+1) Micro_Int_Inst_list))

THEN ASSUM_LIST (\asl. POP_ASSUM(\thm. POP_ASSUM(\thml.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ;T7] @ (subtract asl(thm]l)) thm))))))

THEN DELETE_USTEP_TAC 6

242

% The processor is now stopped due to an addressing exception Y
% specialize and rewrite stop_thm show nothing will change ¥%
THEN ASSUM_LIST(\asl.
let curTime = (term_to_int
(rand(rand(fst(dest_eq(snd(dest_thm(el 1 as1)))))))) in
let endTime =
(term_to_int (snd(dest_eq(snd(dest_thm (el 17 asl)))))) in
ASSUME_TAC(REWRITE_RULE [(el 1 asl); (el 5 asl) ; (el 21 asl);
(sumTHM curTime (endTime-curTime))]
(SPECL [(int_to_term (endTime - curTime)); (t_plus_term curTime)]
stop_thm)))
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ] ¢ (subtract asl[thm])) thm)))))
THEN DELETE_USTEP_TAC 7
THEN 7% rewrite vith address case ¥
ASSUM_LIST(\asl. REWRITE_TAC (CONJUNCTS (el 15 asl)))
THEN ASM_REWRITE_TAC [PAIR_EQ]
THEN REWRITE_TAC [ELP_SET_ELP]
)i

% modification to SHIFT_GOOD_DEST_TAC1 ¥
e(ASSUM_LIST(\asl. ASSUME_TAC(REWRITE_RULE[(el 1 asl)] AXY_IMP1))
THEN ASSUM_LIST(\asl.
IMP_RES_TAC (el (mpc_from_thm (el 3 asl)+1) Micro_Int_Inst_list))
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm. POP_ASSUM(\thm1.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ;T7] @ (subtract asl[thml)) thm))))))
THEN NORMAL_POP_ASSUM_TAC
THEN DELETE_USTEP_TAC 6
THEN NEXT_SYMB_EXEC_TAC 8 THEN DELETE_USTEP_TAC 7
THEN NEXT_SYMB_EXEC_TAC 9 THEN DELETE_USTEP_TAC 8
THEN ASM_CASES_TAC
"“(bitn (rep:-rep_ty)(EL (bt2_val
(RSF rep(fetch rep(ram (t:num),address rep(EL p_reg(reg t))))))
(update_reg(reg t)(F,T,T)(b t)(add rep(EL p_reg(reg t),wordn rep 1)))))"

e(POP_ASSUM(\thm1. POP_ASSUM(\thm2.
(ASSUME_TAC thmi)
THEN ASSUME_TAC(REWRITE_RULE [thm1] thm2)))
THEN ASSUM_LIST(\asl.
let curTime = (term_to_int

243

(rand(rand(fst (dest_eq(snd(dest_thm(el 1 as1)))))))) in
let endTime =
(term_to_int (snd(dest_eq(snd(dest_thm (el 18 asl)))))) in
ASSUME_TAC(REWRITE_RULE[(el 1 asl);(el 6 asl);(el 2 asl);(el 22 asl);
(sumTHM curTime (endTime-curTime)) 1
(SPECL [(int_to_term (endTime - curTime)); (t_plus_term curTime)]
stop_thm)))
THEN ASSUM_LIST (\asl. POP_ASSUM(\thm.
MAP_EVERY ASSUME_TAC ((CONJUNCTS (REWRITE_RULE
([PAIR_EQ] © (subtract asl[thm])) thm)))))
THEN DELETE_USTEP_TAC 9
% from SHIFT_GOOD_DEST_TACZ %
THEN ASSUM_LIST(\asl. DISJ_CASES_TAC (el 15 asl))
THENL [EXPAND_REG_TAC
THEN EXPAND_COND_TAC 15 % rewrite bitn term %
THEN ASM_REWRITE_TAC (PAIR_EQ;EL_SET_EL]
THEN INDEPENDENCE_TAC INDEP_A_UPDATE1

»

POP_ASSUM(\thm. DISJ_CASES_TAC thm)
THEN EXPAND_REG_TAC
THEN EXPAND_COND_TAC 15
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THENL
[INDEPENDENCE_TAC INDEP_X_UPDATEL ;
INDEPENDENCE_TAC INDEP_Y_UPDATE!

]

THEN ASM_REWRITE_TAC []

THEN POP_ASSUM(\thm. (ASSUM_LIST(\asl. REWRITE_TAC
[(REWRITE_RULE ([update_reg] @ asl) thm)])))

)i

e(POP_ASSUM(\thmi. POP_ASSUM(\thm2.
(ASSUME_TAC thml)
THEN ASSUME_TAC(REWRITE_RULE [thm1] thm2)))
THEN NEXT_SYMB_EXEC_TAC 10 THEN DELETE_USTEP_TAC 9
% from SHIFT_GODD_DEST_TAC2 ¥
THEN ASSUM_LIST(\asl. DISJ_CASES_TAC (el 15 asl))
THENL [EXPAND_REG_TAC
THEN EXPAND_COND_TAC 15 % rewrite bitn term %
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THEN INDEPENDENCE_TAC INDEP_A_UPDATE1

’

POP_ASSUM(\thm. DISJ_CASES_TAC thm)

244

THEN EXPAND_REG_TAC
THEN EXPAND_COND_TAC 15
THEN ASM_REWRITE_TAC [PAIR_EQ;EL_SET_EL]
THENL
{ INDEPENDENCE_TAC INDEP_X_UPDATE1L ;
INDEPENDENCE_TAC INDEP_Y_UPDATE!

]

THEN ASM_REWRITE_TAC []

THEN POP_ASSUM(\thm. (ASSUM_LIST(\asl. REWRITE_TAC
[(REWRITE_RULE ([update_regl € asl) thm)])))

245

Appendix H: PHASE LEVEL SPECIFICATION

File: def_phase.ml

Description: Defines the behavioral description of the phase level

interpreter.

Modified by ETS to reflect block changes.

-— == A
set_search_path (search_path() @ lib_dir_list);;
loadf ‘abstract‘;;
system ‘/bin/rm phase_def.th';;
nevw_theory ‘phase_def‘;;
map nev_parent [‘aux_def‘;‘tuple‘; ‘regs_def‘; ‘ucode_def‘; ‘threeval‘];;

let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let phase_one_def = new_definition
(‘phase_one_def‘,
"' (rep:“rep_ty) (regs:(swordn)list) (mreg insreg din dout:*wordn)
(ram:*memory) (b stop ovl:bool) (mar:*address) (res:*wordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(ph1 ph2 ph3:bool) (reset:bool).
phase_one rep (regs, mreg, insreg, din, dout, ram, b, stop, ovl, mar, res,
mpc, mir, urom, rlatch, mlatch, phl, ph2, ph3) (reset) =
stop => (regs, mreg, insreg, din, dout, ram, b, T, ovl, mar, res,
(F,F,F,F,F,F,F), mir, urom, rlatch, mlatch, F, F, F) |
(regs, mreg, insreg, din, dout, ram, b, F, ovl, mar, res,
mpc, urom (bt7_val mpc), urom, rlatch, mlatch, F, T, F) "
HH

let phase_two_def = new_definition
(‘phase_two_def*,
"! (rep: rep_ty) (regs:(swordn)list) (mreg insreg din dout:*wordn)
(ram:*memory) (b stop ovl:bool) (mar:*address) (res:*wordn)

(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)

PREOEDHYG PAGE BLAMY NOT

247

FILMED

(phi ph2 ph3:bool) (reset:bool).
phase_two rep (regs, mreg, insreg, din, dout, ram, b, stop, ovl, mar, res,
mpc, mir, urom, rlatch, mlatch, phi, ph2, ph3) (reset) =
(regs,mreg,insreg,din,
(W mir => EL (bt2_val(Rfc mir => (Mrf mir)| RSF rep insreg))regs | dout),
ram,b, '
((FST(decode rep(opcode rep insreg,b)) /\ (Dec_ctl mir)) \/
((Seqctl mir = (F,F,T))
/\ (((FST(SKD(decode rep(opcode rep insreg,bl))))
((FST(SND(decode rep(opcode rep insreg,b))))
/\ ((MSF rep insreg) = (F,F))) \/
(Seqctl mir = T,F,F) /\ ovl \/
(Seqctl mir = T,F,T) /\ “valid_address rep res \/
(Seqctl mir = T,T,F) /\
(((DSF rep insreg = (T,T,F)) \/ (DSF rep insreg = (T,T,T))) \/
(- (((DSF rep insreg = (T,F,F)) /\ "b) \/
((DSF rep insreg = (T,F,T)) /\ b)) /\
((DSF rep insreg = (F,T,T)) \/
(DSF rep insreg = (T,F,F)) \/
(DSF rep insreg = (T,F,T))) /\
“valid_address rep res) N/
(Seqctl mir = T,T,T) /\
((DSF rep insreg = (F,T,T)) \/
(DSF rep insreg = (T,F,F)) \/
(DSF rep insreg = (T,F,T)) \/
(T,T.F)) \/
(T,T,T))),

(F,F,T,T,F)) \/
(F,F,T,T,T)))

1]

(DSF rep insreg

(DSF rep insreg
ovl,
{(R mir \/ ¥ mir) =>
(Adrs mir => address rep insreg |
address rep(EL p_reg regs))|Imar),
res,mpc,mir,urom,
EL (bt2_val(Rfc mir => (Mrf mir) | RSF rep insreg)) regs,
((Ms mir = F,F) => mreg |
((Ms mir = F,T) => wordn rep 1 | pad rep(address rep insreg))),
F,F,
~ ((FST(decode rep(opcode rep insreg,b)) /\ (Dec_ctl mir)) \/
((Seqctl mir = (F,F,T))
/\ (((FST(SND(decode rep(opcode rep insreg,b))))
((FST(SND(decode rep(opcode rep insreg,b))))
/\ ((MSF rep insreg) = (F,F))) \/
(Seqctl mir = T,F,F) /\ ovl \/
(Seqctl mir = T,F,T) /\ “valid_address rep res \/

(F,F,T,T,F)) \/
(F,F,T,T,T)))

248

(Seqctl mir = T,T,F) /\
(((DSF rep insreg = (T,T,F)) \/ (DSF rep insreg = (T,T,T))) \/
(*(((DSF rep insreg = (T,F,F)) /\ "b) \/
((DSF rep insreg = (T,F,T)) /\ b)) /\
((DSF rep insreg = (F,T,T)) \/
(DSF rep insreg = (T,F,F)) \/

(T,F,T»)) N\
“valid_address rep res » \/

(Seqctl mir = T,T,T) /\

(F,T,T)) \/

(DSF rep insreg = (T,F,F)) \/

(DSF rep insreg = (T,F,T)) \/

(DSF rep insreg = (T,T,F)) \/

(DSF rep insreg = (T,T,T)) yne

(DSF rep insreg

((DSF rep insreg

t

has let definitions. takes a long time to load, so replaced

it by HOL-expanded definition.
let rselect = bt2_val((Rfc mir) => (Mrf mir) | RSF rep insreg) in
let r_out = (EL rselect regs) in
let new_dout = ((W mir) => r_out | dout) in
let bad_res = "(valid_address rep res) in
let df = (DSF rep insreg) in
let pdest = ((df=(F,T,T)) \/ (df=(T,F,F)) \/ (df=(T,F,T))) in
let skip = ((df=(T,F,F)) /\ "b) \/ ((df=(T,F,T)) /\ b) in
let bad_rdest = ((df=(T,T,F)) \/ (af=(T,T,T))) in
let bad_dest = ((df=(F,T,T)) \/ (df=(T,F,F)) \/ (af=(T,F,T))
\/ (d£=(T,T,F)) \/ (df=(T,T,T)))
in
let seq_case4 = ((Seqctl mir) = (T,F,F)) in
let seq_caseS = ((Seqctl mir) = (T,F,T)) in
let seq_case6é = ((Seqctl mir) = (T,T,F)) in
let seq_case7 = ((Seqctl mir) = (T,T,T)) in
let msl_stop = ((seq_cased /\ ovl) \/
(seq_case5 /\ bad_res) \/
(seq_case6 /\ (bad_rdest \/
("skip /\ pdest /\ bad_res))) \/
(seq_case7 /\ bad_dest))) in
let new_stop = (((FST (decode rep (opcode rep insreg, b)))

/\ (Dec_ctl mir))
\/ msl_stop) in

249

let

let
let

adr_out = ((Adrs mir) => (address rep insreg) |
(address rep (EL p_reg regs))) in

new_mar = (((R mir) \/ (W mir)) => adr_out | mar) in

new_rlatch = r_out in

let new_mlatch = (((Ms mir) = (F,F)) => mreg |
((Ms mir) = (F,T)) => (wordn rep 1) |

(pad rep (address rep insreg))) in
(regs, mreg, insreg, din, nev_dout, ram,’b, new_stop, ovl, nev_mar,

res, mpc, mir, urom, nev_rlatch, nev_mlatch, F, F, “new_stop)"

%

let phase_three_def = nev_definition

(‘phase_three_def’,

250

"t (rep: rep_ty) (regs:(*wordn)list) (mreg insreg din dout:swordn)
(ram:*memory) (b stop ovl:bool) (mar:»address) (res:*vordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(ph1 ph2 ph3:bool) (reset:bool).

phase_three rep(regs, mreg, insreg,din, dout, ram, b, stop, ovl, mar, res,
mpc, mir, urom, rlatch, mlatch, phl, ph2, ph3) (reset) =

((Re mir => ‘

((Dfc mir /\ ((Mdf mir = (T,T,F)) \/ (Mdf mir = (T,T,T)))) =>
regs |
update_reg regs
(Dfc mir => (Mdf mir) | DSF rep insreg) b
(((Aluctl mir = F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>
mlatch |
((Aluctl mir = F,F,F,T) =>
rlatch |
((Aluctl mir = F,F,T,T) =>
neg rep mlatch |
(((Aluctl mir = F,T,F,F) \/ (Aluctl mir = F,T,F,T)) =>
add rep(rlatch,mlatch) |
(((Aluctl mir = F,T,T,F) \/ (Aluctl mir = F,T,T,T)) =>
sub rep(rlatch,mlatch)
((Aluctl mir = T,F,F,F) =>
bxor rep(rlatch,mlatch) |
({(Aluctl mir = T,F,F,T) =>
band rep(rlatch,mlatch) |
((Aluctl mir = T,F,T,F) =>
bnor rep(rlatch,mlatch) |
((Aluctl mir = T,F,T,T) =>
band rep(rlatch,bnot rep mlatch) |
((Aluctl mir = T,T,F,F) =>
shr rep rlatch |

((Aluctl mir = T,T,F,T) =>
shrb rep(rlatch,b) |
((Aluctl mir = T,T,T,F) =>
shl rep rlatch |
shlb rep(rlatch,b))))))N |
regs),
(De mir =>
(Ds mir => mreg | din) |
((Re mir /\ Dfc mir /\

((bt3_val(Dfc mir =>(Mdf mir) | DSF rep insreg))=6)) =>
(((Aluctl mir = F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>
mlatch |
((Aluctl mir = F,F,F,T) =>

rlatch |

((Aluctl mir = F,F,T,T) =>
neg rep mlatch |
(((Aluctl mir = F,T,F,F) \/ (Aluctl mir = F,T,F,T)) =>
add rep(rlatch,mlatch) |
(((Aluctl mir = F,T,T,F) \/ (Aluctl mir = F,T,T,T)) =>
sub rep(rlatch,mlatch) |
((Aluctl mir = T,F,F,F) =>
bxor rep(rlatch,mlatch) |
((Aluctl mir = T,F,F,T) =>
band rep(rlatch,mlatch)
((Aluctl mir = T,F,T,F) =>
bnor rep(rlatch,mlatch) |
((Aluctl mir = T,F,T,T) =>
band rep(rlatch,bnot rep mlatch) |
((Aluctl mir = T,T,F,F) =>
shr rep rlatch |
((Aluctl mir = 1,T,F,T) =>
shrb rep(rlatch,b) |
((Aluctl mir = T,T,T,F) =
shl rep rlatch |
shlb rep(rlatch,b)))))))))))MN
mreg)),
(De mir =>
(Ds mir => din | insreg) |
((Re mir /\ Dfc mir /\
((bt3_val(Dfc mir =>(Mdf mir) | DSF rep insreg))=7)) =>
join rep (opcode rep insreg, address rep
(((Aluctl mir = F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>
mlatch |
((Aluctl mir = F,F,F,T) =>

251

rlatch |
((Aluctl mir = F,F,T,T) =>
neg rep mlatch |
(((Aluctl mir = F,T,F,F) \/ (4Aluctl mir = F,T,F,T)) =>
add rep(rlatch,mlatch) |
(((Aluctl mir = F,T,T,F) \/ (Aluctl mir = F,T,T,T)) =>
sub rep(rlatch,mlatch)
((Aluctl mir = T,F,F,F) =>
bxor rep(rlatch,mlatch)
((Aluctl mir = T,F,F,T) =>
band rep(rlatch,mlatch)
((Aluctl mir = T,F,T,F) =>
bnor rep(rlatch,mlatch) |
((Aluctl mir = T,F,T,T) =>
band rep{(rlatch,bnot rep mlatch) |
((Aluctl mir = T,T,F,F) =>
shr rep rlatch |
((Aluctl mir = T,T,F,T) =>
shrb rep(rlatch,b) |
((Aluctl wir = T,T,T,F) =>
shl rep rlatch |
shlb rep(rlatch,b)))))))))))))) |
insreg)),

(R mir => (Io mir => fetchio rep(ram,mar) | fetch rep(ram,mar)) | din),

dout,

(¥ mir=>(Io mir=>storeio rep(ram,mar,dout) |store rep(ram,mar,dout))| ram),

((Aluctl mir = F,F,T,F) =>

bemp rep(rlatch,mlatch,b,FSF rep insreg) |

((Aluctl mir = F,T,F,F) =>
addp rep(rlatch,mlatch,add rep(rlatch,mlatch))
((Aluctl mir = F,T,T,F) =>
subp rep(rlatch,mlatch,sub rep(rlatch,mlatch))
({Aluctl mir = T,T,F,T) =>
bit0 rep rlatch |
((Aluctl mir = T,T,T,T) => bitn rep rlatch | b))))),

F,

(((Aluctl mir = F,T,F,F) \/ (Aluctl mir = F,T,F,T)) =>
aovfl rep(rlatch,mlatch,add rep(rlatch,mlatch))
({(Aluctl mir = F,T,T,F) \/ (Aluctl mir = F,T,T,T)) =>

sovfl rep (rlatch,mlatch,sub rep(rlatch,mlatch))
((Aluctl mir = T,T,T,F) => bitn rep rlatch | F))),
mar,

(((Aluctl mir = F,F,F,F) \/ (Aluctl mir = F,F,T,F)) =>

mlatch |

252

%

((Aluctd mir = F,F,F,T) =>
rlatch
((Aluctl mir = F,F,T,T) =>
neg rep mlatch |
(((Aluctl mir = F,T,F,F) \/ (Aluctl mir = F,T,F,T)) =>
add rep(rlatch,mlatch)
(((Aluctl mir = F,T,T,F) \/ (Aluctl mir = F,T,T,T)) =>
sub rep(rlatch,mlatch)
((Aluctl mir = T,F,F,F) =>
bxor rep(rlatch,mlatch)
((Aluctl mir = T,F,F,T) =>
band rep(rlatch,mlatch) |
((Aluctl mwir = T,F,T,F) =>
bnor rep(rlatch,mlatch) |
((Aluctl mir = T,F,T,T) =>
band rep(rlatch,bnot rep mlatch) |
((Aluctl mir = T,T,F,F) =>
shr rep rlatch |
((Aluctl mir = T,T,F,T) =>
shrb rep(rlatch,b)
({Alyctl mir = T,T,T,F) =>
shl rep rlatch |
shlb rep(rlatch,b)))))>))))))),
F,F,T) /\ SND(SND(decode rep(opcode rep insreg,b))) \/
F,T,F) \/
(Seqctl mir = F,T,T)) =>
(((Seqctl mir = F,F,T)
/\ “((((FST(SND(decode rep(opcode rep insreg,b)))} = (F,F,T,T,F)) \/
((FST(SND(decode rep(opcode rep insreg,b)))) = (F,F,T,T,T)))
/\ ((MSF rep insreg) = (F,F)))
/\ SKD(SND(decode rep(opcode rep insreg,b)))
) =
bt7_ival ({(bt7_val(Maddr mir)) + (bt2_val(MSF rep insreg))) |
((Seqctl mir = F,T,F) =>
bt7_ival
((bt7_val(Maddr mir)) +
(btS_val (FST(SND(decode rep{opcode rep insreg,b)))))) |
((Seqc¢tl mir = F,T,T) => Maddr mir | (F,F,F,F,F,F,F))))

(((Seqctl mir

(Seqctl mir

bt7_ival((bt7_val mpc) + 1)),

mir,urom,rlatch,mlatch,T,F,F)"

has let definitions. takes a long time to load, so replaced

253

it by HOL-expanded definition.

let alu_case0 = ((Aluctl mir) = (F,F,F,F)) in
let alu_casel = ((Aluctl mir) = (F,F,F,T)) in
let alu_case2 = ((Aluctl wir) = (F,F,T,F)) in
let alu_case3 = ((Aluctl mir) = (F,F,T,T)) in
let alu_case4 = ((Aluctl mir) = (F,T,F,F)) in
let alu_caseS = ((Aluctl mir) = (F,T,F,T)) in
let alu_case6 = ((Aluctl mir) = (F,T,T,F)) in
let alu_case7 = ((Aluctl mir) = (F,T,T,T)) in
let alu_case8 = ((Aluctl mir) = (T,F,F,F)) in
let alu_case9 = ((Aluctl mir) = (T,F,F,T)) in
((Aluctl mir) = (T,F,T,F)) in
((Aluctl mir) = (T,F,T,T)) in
((Aluctl mir) = (T,T,F,F)) in
((Aluctl mir) = (T,T,F,T)) in
((Aluctl mir) = (T,T,T,F)) in
(T,T,T,T)) in
let sum = (add rep (rlatch,mlatch)) in

let alu_casel0

let alu_casell

n
L]

let alu_casel?

let alu_casell

let alu_casel4d

let alu_casel5 = ((Aluctl mir)

let diff = (sub rep (rlatch,mlatch)) in
let result = (((alu_case0) \/ (alu_case2)) => mlatch |
alu_casel => rlatch |
alu_case3 => (neg rep mlatch) |
(alu_case4 \/ alu_case5) => sun |
(alu_case6 \/ alu_case7) => diff |
alu_case8 => (bxor rep (rlatch, mlatch))
alu_case9 => (band rep (rlatch, mlatch)) |
alu_casel0 => (bnor rep (rlatch, mlatch)) |
alu_casell => (band rep (rlatch, bnot rep mlatch))
alu_casel2 => (shr rep rlatch) |
alu_casel3 => (shrb rep (rlatch, b)) |
alu_casel4 => (shl rep rlatch) |
(shlb rep (rlatch, b))) in
let w_reg = ((Dfc mir) => (Mdf mir) | DSF rep insreg) in
let new_regs =
((Re mir) =>
(((Dfc mir) /\ ((Mdf mir = (T,T,F)) \/ (Mdf mir = (T,T,T))))
regs |
update_reg regs w_reg b result) |
regs) in
let new_mreg =
((De mir) => ((Ds mir) => mreg | din) |
(((Re mir) /\ (Dfc mir) /\ (bt3_val(w_reg)=6))

254

result | mreg)) in

let new_insreg =

((De mir) => ((Ds mir) => din | insreg) |
(((Re mir) /\ (Dfc mir) /\ (bt3_val(v_reg)=7)) =>
(join rep (opcode rep insreg, address rep result))
insreg)) in
let new_din = ((R mir) => ({Io mir) => fetchio rep (ram, mar) |
fetch rep (ram, mar)) |
din) in
let nev_ram = ((W mir) => ((Io mir) => storeio rep (ram, mar, dout) |
store rep (ram, mar, dout)) |
ram) in
let nev_b = (alu_case2 =>
(bemp rep (rlatch, mlatch, b, FSF rep insreg)) |

alu_case4 => (addp rep (rlatch, mlatch, sum)) |
alu_case6 => (subp rep (rlatch, mlatch, diff)) |
alu_casel3 => (bit0 rep rlatch) |
alu_caselS => (bitn rep.rlatch) |
b) in

let nev_ovl = ((alu_case4 \/ alu_case5)

(aovfl rep (rlatch, mlatch, sum)) |

>

(alu_case6 \/ alu_case7) =>
(sovfl rep (rlatch, mlatch, diff)) |

alu_casel4 => (bitn rep rlatch) |

F) in
let new_res = result in
let seq_casel = ((Seqctl mir) = (F,F,T)) in

let seq_case2 = ((Seqctl mir) = (F,T,F)) in
let seq_case3 = ((Seqctl mir) = (F,T,T)) in
let reqm = (SND(SND(decode rep (opcode rep insreg, b)))) in
let opc = (FST(SND(decode rep (opcode rep insreg, b)))) in
let jaddr = ((seq_casel /\ reqm) =>
(bt7_ival ((bt7_val (Maddr mir))+ (bt2_val(MSF rep insreg))))
seq_case2 =>
(bt7_ival ((bt7_val (Maddr mir))+(bt5_val opc))) |
seq_case3 => (Maddr mir) |
(F,F,F,F,F,F,F)) in
let muxmc = ((seq_casel /\ reqm) \/ seq_case2 \/ seq_case3) in
let nev_mpc = (muxmc => jaddr | bt7_ival (bt7_val mpc + 1)) in
(new_regs, nev_mreg, new_insreg, new_din, dout, new_ram, new_b, F,
nevw_ovl, mar, new_res, new_mpc, mir, urom, rlatch, mlatch, T, F, F)"

- %

l/. - e . -

255

Selector function on phase level state for the phase level

counter.

let GetPhaseClock = new_definition
(‘GetPhaseClock‘,

"1 (regs:(swordn)list) (mreg insreg din dout:*wordn)
(ram:*memory) (b stop ovl:bool) (mar:*address) (res:*wordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(ph1 ph2 ph3:bool) (reset:bool).

GetPhaseClock (regs, mreg, insreg, din, dout, ram, b, stop, ovl, mar,
res, mpc, mir, urom, rlatch, mlatch, phl, ph2, ph3) (reset) =
(ph2 => TWO |
ph3 => THREE |
ONE) "

Gives the number of EBM cycles to implement one phase level

cycle.

let PhaselevelCycles = new_definition
(‘PhaselevelCycles®,
"1 t:triple.
PhaseLevelCycles t = 1"
)i

let PhaseClockBegin = new_definition
(‘PhaseClockBegin‘,
"PhaseClockBegin = ONE"

______ ——— ————————— ———— ______z

let Phase_Substate = new_definition
(‘Phase_Substate®,
"1 (regs:(*wordn)list) (mreg insreg din dout:*wvordn)
(ram:*memory) (b stop ovl:bool) (mar:*address) (res:*wordn)
(mpc:bt7) (mir:ucode) (urom:num->ucode) (rlatch mlatch:*wordn)
(pht ph2 ph3:bool) (reset:bool).
Phase_Substate (regs, mreg, insreg, din, dout, ram, b, stop, ovl, mar,

res, mpc, mir, urom, rlatch, mlatch, phl, ph2, ph3) =

256

(regs,mreg, insreg,din,dout,ram,b,stop,ovl,mar,res,mpc)"

’I’ serves as the substate funtion since the state
of the phase level is equivalent to the phase of the EBM.

'I’ also serves as the subenv function since the set of external
lines in the phase level is the same as the set of external

lines in the EBM.

close_theory (;;

257

File: mk_phase.ml

Description: Defines the phase level interpreter in terms of the

definitions in block_def.th, phase_def.th, and gen_I.th.

Proves the lemmas meeting the theory obligations for the

abstract theory gen_I.th and instantiates a proof of the

phase level in terms of the EBM.

_______ - ——— o o — °/'

set_search_path (search_path() ¢ lib_dir_list);;

loadf ‘abstract‘;;

system ‘/bin/rm phase.th‘;;

nev_theory ‘phase‘;;

map new_parent [‘gen_I‘; ‘phase_def‘; ‘block_def‘];;
load_definitions ‘threeval‘;;

load_theorems ‘threeval‘;;

let time_shift = definition ‘gen_I' ‘time_shift‘;;

let GetPhaseClock = definition ‘phase_def‘ ‘GetPhaseClock‘;;

let PhaselevelCycles = definition ‘phase_def‘ ‘PhaselevelCycles‘;;
let phase_one_def = definition ‘phase_def‘ ‘phase_one_def‘;;

let phase_two_def = definition ‘phase_def‘ ‘phase_two_def‘;;

let phase_three_def = definition ‘phase_def‘ ‘phase_three_def‘;;
let GetEBMClock = definition ‘block_def‘ ‘GetEBMClock‘;;

let EBM_Start = definition ‘block_def‘ 'EBM_Start‘;;

let EBM_expanded = theorem ‘block_def‘ ‘EBM_expanded‘;;

loadf ‘tuple‘;;

let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let I_rep_ty = abstract_type ‘gen_I‘ ‘Impl‘;;

let Phase_state =
":(*wordn)list # swordn # *wordn # *wordn # *wordn # *memory # bool

bool # bool # *address # *vordn # bt7 # ucode # (num -> ucode) #

258

sgordn # *wordn # bool # bool # bool";;

let Phase_env = ":bool";;

let EBM_state = Phase_state;;

let EBM_env = Phase_env;;

R — —— -———

We might as well do this now, we’ll have to do it sooner or

later.

let phase_two_expanded =
EXPAND_LET_RULE phase_two_def;;

let phase_three_expanded =
EXPAND_LET_RULE phase_three_def;;

‘/. _______________________________ - ——

Define the phase level interpeter in terms of the generic

interpreter definition.

let Phase_I_def = new_definition
(‘Phase_I_def*,
"' (rep:"rep_ty) (s:time->"Phase_state) (e:time->"Phase_env) .
Phase_I rep s e =
INTERP
({ONE,phase_one rep;
TW0,phase_two rep;
THREE,phase_three rep],
triple_value,
(GetPhaseClock: "Phase_state -> “Phase_env -> triple),
(PhaselevelCycles:triple->num),
(I:"EBM_state->"Phase_state),
(1:"EBM_env->"Phase_env), EBM rep,
(GetEBMClock: "EBM_state->"EBM_env->bool),
EBM_Start, @x:one.F) s e"
)i

let PHASE_I = save_thm
(‘PHASE_I®,
BETA_RULE (EXPAND_LET_RULE
(instantiate_abstract_definition ‘gen_I‘ ‘INTERP‘ Phase_I_def)));;

let Phase_I_IMPL_IMP_DEF = new_definition

259

(‘Phase_I_IMPL_IMP_DEF¢,
"I (rep: rep_ty) s’ e’.
Phase I_IMPL_IMP rep s’ e’ =
IMPL_IMP
([ONE,phase_one rep;
TWO,phase_two rep;
THREE, phase_three rep],
triple_value,
(GetPhaseClock: “Phase_state -> “Phase_env -> triple),
(PhaselevelCycles:triple->num),
(I:"EBM_state->"Phase_state),
(I:"EBM_env->"Phase_env), EBM rep,
(GetEBMClock: "EBM_state~>"EBM_env->bool),
EBM_Start, €x:one.F) s’ e’"

let Phase_I_IMPL_IMP =
let Phase_I_EXT =
CONV_RULE (TOP_DEPTH_CONV FUN_EQ_CONV) Phase_I_IMPL_IMP_DEF in
(REWRITE_RULE [I_THM] (BETA_RULE (EXPAND_LET_RULE
(instantiate_abstract_definition
‘gen_I‘ ‘IMPL_IMP‘ Phase_I_EXT))));;

We need to establish the first theory obligation for the abstract
theory for a generic interpreter. First, we

will prove Phase_I_IMPL_IMP applies to each of the phases and
then use these results to establish that Phase_I_IMPL_IMP applies

to EVERY instruction (i.e. the first theory obligation.

'/' _____________________ e L

let cond3_def = new_definition

(‘cond3_def",

"1cl ¢2 . cond3_def cl1 ¢2 =
(¢l => TWO |
¢2 => THREE |

ONE) "
)i

let xx = prove_constructors_distinct triple;;

let cond3_lemma = prove_thm
(‘cond3_lemma‘,

"1 ¢l c2 . (((cond3_def c1 c2 = TWO) ==> c1) /\

260

((cond3_def c1 c2 = THREE) ==> ¢2) /\
((cond3_def c1 ¢2 = ONE) ==> (“c1 /\ e,
REPEAT GEN_TAC THEN REWRITE_TAC[cond3_def] THEN
MAP_EVERY BOOL_CASES_TAC ["c1l:bool"; "c2:bool"]
THEN REWRITE_TAC[PAIR_EQ] THEN REWRITE_TAC (CONJUNCTS xx) THEN
REWRITE_TAC
[NOT_EQ_SYM(hd (CONJUNCTS xx)); NOT_EQ_SYM(hd(tl(CONJUNCTS xx)));
NOT_EQ_SYM(hd(t1(t1(CONJUNCTS xx))))]
)i

let COND_NULL_LEMMA = TAC_PROOF
(0, "tb (c: *).
(d=>clc) = ¢,
REPEAT GEN_TAC
THEN BOOL_CASES_TAC "b"
THEN REWRITE_TAC{[]

%= - _— e e ———————

PHASE_EBM_TAC is used to prove that the individual phases
satisfy Phase_I_IMPL_IMP.

let PHASE_EBM_TAC =

PURE_ONCE_REWRITE_TAC [Phase_I_IMPL_IMP]

THEN REPEAT GEN_TAC

THEN BETA_TAC

THEN REWRITE_TAC [GetPhaseClock;PhaseLevelecles;
GetEBMClock;EBM_Start;phase_one_def;
phase_two_def;phase_three_def]

THEN SUBST_TAC [EBM_expanded]

THEN REPEAT STRIP_TAC

THEN POP_ASSUM_LIST (\asl. (MAP_EVERY (STRIP_ASSUME_TAC o SPEC_ALL) asl))

THEN POP_ASSUM_LIST (\asl. (MAP_EVERY (STRIP_ASSUME_TAC o SPEC_ALL) asl));:

let PHASE_ONE_EBM_LEMMA = TAC_PROOF
«a,

"!(rep:“rep_ty) (regs:time->(*wordn)list)
(mreg insreg din dout:time->#wordn) (ram:time->*memory)
(b stop ovl:time->bool) (mar:time->#+address) (res:time->*vordn)
(mpc:time->bt7) (mir:time->ucode) (urom:num->ucode)
(rlatch mlatch:time->*wordn) (phi ph2 ph3:time->bool)
(reset:time->bool).

Phase_I_IMPL_IMP rep

(\t:num.

(regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,

ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,

261

phl t, ph2 t, ph3 t))
(\t:num. (reset t))
(ONE,phase_one rep)"),
PHASE_EBM_TAC
THEN POP_ASSUM (\thm. STRIP_ASSUME_TAC (MULTI_MP
(CONJUNCTS (SPECL ["{ph2 t):bool"; " (ph3 t) :bool"]
(REWRITE_RULE [cond3_def] cond3_lemma))) thm))
THEN COND_CASES_TAC
THEN POP_ASSUM(\thm. ASSUME_TAC (REWRITE_RULE[] thm))
THEN REWRITE_TAC([PAIR_EQ]
THENL [
ASSUM_LIST (\asl. STRIP_ASSUME_TAC
(REWRITE_RULE [el 1 asl] (el 13 asl))) THEN
POP_ASSUM_LIST (\asl. (MAP_EVERY
(CHECK_ASSUME_TAC o (REWRITE_RULE
[(el 1 asl); (el 2 asl); (el 3 asl); (el 4 asl)])) asl)) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[COND_NULL_LEMMA]

ASSUM_LIST (\asl. STRIP_ASSUME_TAC
(REWRITE_RULE [(el 1 asl); (el 2 asl); (el 3 asl)]

(el 12 asl))) THEN

POP_ASSUM_LIST (\asl. (MAP_EVERY

(CHECK_ASSUME_TAC o (REWRITE_RULE
[Cel 1 asl); (el 2 asl); (el 3 asl); (el 4 asl)])) asl)) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[COND_NULL_LEMMA]
]
)i

let PHASE_TWO_EBM_LEMMA = TAC_PROOF
«a,
"i(rep: "rep.ty) (regs:time->(*wordn)list)
(mreg insreg din dout:time->+vordn) (ram:time->*memory)
(b stop ovl:time->bool) (mar:time->*address) (res:time->*wordn)
(mpc:time->bt7) (mir:time->ucode) (urom:num->ucode)
(rlatch mlatch:time->*wordn) (phl ph2 ph3: time->bool)

(reset:time->bool).
Phase_I_IMPL_IMP rep

(\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urem, rlatch t, mlatch t,
phi t, ph2 t, ph3 t))
(\t. (reset t))
(TWO,phase_two rep)"),
PHASE_EBM_TAC THEN
REWRITE_TAC[PAIR_EQ] THEN

262

POP_ASSUM (\thm. STRIP_ASSUME_TAC (MULTI_MP
(CONJURCTS (SPECL ["(ph2 t):bool"; "(ph3 t):bool"]

(REWRITE_RULE [cond3_def] cond3_lemma))) thm)) THEN

ASSUM_LIST (\asl. STRIP_ASSUME_TAC
(REWRITE_RULE [el 1 asl] (el 9 asl))) THEN

POP_ASSUM_LIST (\asl. (MAP_EVERY

(CHECK_ASSUME_TAC o (REWRITE_RULE

[(el 1 asl); (el 2 asl); (el 3 asl); (el 4 asl)])) asl)) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[COND_NULL_LEMMA]
Y5

let PHASE_THREE_EBM_LEMMA = TAC_PROOF
«(a,
"!(rep: rep_ty) (regs:time->(*wordn)list)
(mreg insreg din dout:time->*wordn) (ram:time->*nemory)
(b stop ovl:time->bool) (mar:time->#address) (res:time->swordn)
(mpc:time->bt7) (mir:time->ucode) (urom:num->ucode)
(rlatch mlatch:time->*wordn) (phl ph2 ph3:time->bool)
(reset:time->bool).
Phase_I_IMPL_IMP rep
(\t. (regs t, mreg t, insreg t, din t, dout t, ramt, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t))
(\t. (reset t))
(THREE,phase_three rep)"),

PHASE_EBM_TAC THEN
REWRITE_TAC[PAIR_EQ] THEN
POP_ASSUM (\thm. STRIP_ASSUME_TAC (MULTI_MP
(CONJUNCTS (SPECL ["(ph2 t):bool"; "(ph3 t):bool"]
(REWRITE_RULE [cond3_def] cond3_lemma))) thm)) THEN
ASSUM_LIST (\asl. STRIP_ASSUME_TAC
(REWRITE_RULE [el 1 asl] (el 8 asl))) THEN
POP_ASSUM_LIST (\asl. (MAP_EVERY
(CHECK_ASSUME_TAC o (REWRITE_RULE
[(el 1 asl); (el 2 asl); (el 3 asl); (el 4 asl)])) asl)) THEN
ASSUM_LIST (\asl. REWRITE_TAC [SYM
(REWRITE_RULE [el 43 asl] (el 8 asl))]) THEN
POP_ASSUM_LIST (\asl. MAP_EVERY (\thm.
let rat = ((fst o dest_var o rator o fst o dest_eq)
(concl thm) ? ‘xxx‘) and
ran = ((fst o dest_var o rand o fst o dest_eq)
(concl thm)? ‘xxx‘) in
if ((mem rat (words ‘result‘)) & (mem ran (words ‘t)))
then ALL_TAC else ASSUME_TAC thm) asl) THEN

263

ASM_REWRITE_TAC[] THEN
POP_ASSUM_LIST(\asl. ALL_TAC) THEN
BOOL_CASES_TAC "R{mir t):bool" THEN REWRITE_TAC[]

let Phase_I_EVERY_IMPL_IMP = TAC_PROOF
(11,
"t (rep:"rep.ty) (regs:time->(swordn)list)
(mreg insreg din dout:time->*wordn) (ram: time->*memory)
(b stop ovl:time->bool) (mar:time->*address) (res:time->*wordn)
(mpc:time->bt7) (mir:time->ucode) (urom:num->ucode)
(rlatch mlatch:time->*wordn) (ph1l ph2 ph3:time->bool)
(reset:time->bool).
EVERY (Phase_I_IMPL_IMP rep
(\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
pht t, ph2 t, ph3 t))
(\t. (reset t)))
[ONE,phase_one rep;
TWO,phase_two rep;
THREE,phase_three repl™),
REWRITE_TAC [EVERY_DEF]
THEN REPEAT STRIP_TAC
THEN FIRST [
MATCH_ACCEPT_TAC PHASE_ONE_EBM_LEMMA;
MATCH_ACCEPT_TAC PHASE_TWO_EBM_LEMMA;
MATCH_ACCEPT_TAC PHASE_THREE_EBM_LEMMA
]
)i

let Phase_I_EVERY_LEMMA = (SPEC_ALL
(PURE_ONCE_REWRITE_RULE [Phase_I_IMPL_IMP_DEF] Phase_I_EVERY_IMPL_IMP));;

let Phase_I_LENGTH_LEMMA = TAC_PROOF

o,
"1 k:triple. triple_value k < (LENGTH [ONE,phase_one (rep: rep_ty);
TWO,phase_tvwo rep;
THREE,phase_three rep])"),
MATCH_ACCEPT_TAC triple_ LENGTH_LEMMA

)i

264

--- -,

let triple_cases = prove_cases_thm (prove_induction_thm triple);;

let Phase_I_KEY_LEMMA = TAC_PROOF
«n,
"!k:triple . k = (FST (EL (triple_value k) [ONE,phase_one (rep:-rep_ty);
TW0,phase_two rep;
THREE,phase_three rep]))"),
REPEAT GEN_TAC
THEN STRUCT_CASES_TAC (SPEC "k:triple" triple_cases)

THEN REWRITE_TAC (CONJUNCTS triple_VALUE_LEMMA)
THEN CONV_TAC (TOP_DEPTH_CONV num_CONV)
THEN REWRITE_TAC [EL;FST;HD;TL]

________ - - et e e A

let theorem_list =

instantiate_abstract_theorems
‘gen_I*
[Phase_I_EVERY_LEMMA;
Phase_I_LENGTH_LEMMA;
Phase_I_KEY_LEMMA]
C
("rep:~I_rep_ty",
"([ONE,phase_one (rep: rep_ty);
TWO,phase_two rep;
THREE,phase_three rep],
triple_value, (GetPhaseClock: Phase_state->"Phase_env->triple),
PhaseLevelCycles, (I:“EBM_state->"Phase_state),
(I:"EBM_env->"Phase_env),
EBM rep, (GetEBMClock: EBM_state->"EBM_env->bool), EBM_Start)");
("e’:time’->xenv’'",
"(\t:time. (reset t)):time->"EBM_env");
("s’:time->#*state’",
"(\t:time. (regs t, mreg t, insreg t, din t, dout t, ram t,
bt, stopt, ovl t, mar t, res t, mpc t, mir t, urom,
rlatch t, mlatch t, phil t,
ph2 t, ph3 t)):time->"EBM_state');

]
‘PHASE;;

265

Timeshift doesn’t mean anything at this level since they share

a clock.

________ —
let TIME_SHIFT_DEGENERATE_LEMMA = TAC_PROOF

11,

"1 (s:time->"Phase_state) (e:time->"Phase_env).

time_shift(\st env. PhaseLevelCycles (GetPhaseClock st env)) s e =),

REPEAT GEN_TAC

THEN CONV_TAC (DEPTH_CONV FUN_EQ_CONV)

THEN INDUCT_TAC

THEN ONCE_REWRITE_TAC [EXPAND_LET_RULE time_shift]

THEN ASM_REWRITE_TAC [I_THM;PhaselLevelCycles;GetPhaseClock;o_DEF;ADD1]

)i

let correct_lemma = snd(hd theorem_list);;

-/'_ _____ - —— -——

Rewrite the coorectness lemma into a prettier form.
______________________ -
let EBM_IMPL_PHASE_LEMMA = save_thnm

(‘EBM_IMPL_PHASE_LEMMA¢,

(ONCE_REWRITE_RULE [I_o_ID] (EXPAND_LET_RULE

(ONCE_REWRITE_RULE
{GetEBMClock;EBM_Start;I_THM; TIME_SHIFT_DEGENERATE_LEMMA]
(BETA_RULE

(ONCE_REWRITE_RULE [SYM_RULE Phase_I_def] correct_lemma))})))

)i

close_theory();;

266

Appendix I: ELECTRONIC BLOCK LEVEL

% - ————————— e ——————— ——

File: def_regs.ml

Description: Register file definitions

set_search_path (search_path() ¢ lib_dir_list);;
system ‘/bin/rm regs_def.th';;
new_theory ‘regs_def‘;;

map new_parent [‘aux_def‘; ‘aux_thms‘];;

—
©
ot
o
]

new_definition (‘A‘,"a_reg = 0");;
let X = new_definition (‘X‘,"x_reg = 1");;

let Y = new_definition (‘Y‘,"y_reg = 2");;

—
[
o
o
H

nevw_definition (‘P‘,"p_reg = 3");;

let update_reg = new_definition
(‘update_reg',
"! (registers:(*wordn)list) (n:bt3) b value.
update_reg registers n b value =
(((n=(F,F,F)) \/ (n=(F,F,T)) \/ (n=(F,T,F))) =>
SET_EL (bt3_val n) registers value |
((n=(F,T,) =>
SET_EL p_reg registers value |
(((@=(T,F,F)) /\ b) \/ ((n=(T,F,T)) /\ "b))) =>
SET_EL p_reg registers value |
registers))"”

)i

close_theory();;

~%

267

File: def_block.ml

Description: Defines the behavioral description of the electronic block

model.

Modified by ETS:
The sequence control logic now recognizes the
stop case where the pc, io space or is the target

but, it is not valid.

7/17 the register block now also receives the b flag value which must

be passed to update_reg. The datapath was changed accordingly.
the msl also receives b and control unit, ebm

9/7 MSL stops for writeio or write with mf = (F,F)

set_search_path (search_path() @ lib_dir_list);;
loadf ‘abstract‘;;

system ‘/bin/rm block_def.th‘;;

nev_theory ‘block_def‘;;

map new_parent [‘regs_def‘; ‘ucode_def; ‘tuple‘l;;

let rep_ty = abstract_type ‘aux_def‘ ‘opcode‘;;

let GND = new_definition
(‘GND*,
"1 out . GND out = (out = F)"

Y= —— [

___________________________ _———— ——— —————————————Y

let MUXR_SPEC = new_definition
(‘MUXR_SPEC‘,
"1 o¢ctl (a:bt2) b c .
MUXR_SPEC ctl a b ¢ =
¢ = (ctl =>a | bB)"

268

)ss
Y e e e mmem
Mux which selects one of destination register selects from instn and microinstn
__ Y
let MUXD_SPEC = new_definition
(‘MUXD_SPEC*,
") ctl (a:bt3) bc .
MUXD_SPEC ¢ctl a b ¢ =
c=(tl=>alb"
)5
'/. ___
Mux which selects addresses of next microinstruction
__ Y,
let MUXM_SPEC = new_definition
(*MUXM_SPEC‘,
"t ctl (a:bt7) b c .
MUXM_SPEC ctl a b ¢ =
c = (ctl =>a | bp)"
M
'/. _______________________________ ————— o e e e e e e
Register specification - *wordn (MLATCH, RLATCH, RES)
__ Y
let REG_SPEC = new_definition
(‘REG_SPEC*,
"t (i:time->*wordn) 14 out .
REG_SPEC i 1d out =
(! t:time . out(t+1) = 1dt => it
| out t)"
)i
‘/. __
Flipflop (1-bit register) (B)
__ Y%

let FF_SPEC = new_definition
(‘FF_SPEC‘,
"t (in:time->bool) (1ld:time->bool) (q:time->bool) .
FF_SPEC in 1d q =
! t:num . q(t+1) = ((1d t) =>int | q t)"

Register with enable input - *wordn (DIN, DOUT)

269

let REG_EN_SPEC = new_definition
(“REG_EN_SPEC‘,
"1 get clk (in:time->*wordn) out .
REG_EN_SPEC set clk in out =
tt:time. out (t+1) = ((set t) /\ (clk t)) => in t | out t"
)s3s

- S
Register with enable input - *address (MAR)

______ ——— ———————— [P ‘/.

let MAR_SPEC = new_definition
(‘MAR_SPEC‘,
"l set clk (in:time->+address) out .
MAR_SPEC set clk in out =
tt:time. out (t+1) = ((set t) /\ (clk t)) => in t | out t"
)is

%=—- -—— e ———————————————— ————————

PHASE CLOCK

let PHASE_CLOCK_SPEC = new_definition
(‘PHASE_CLOCK_SPEC‘,

"t dis pl p2 p3.
PHASE_CLOCK_SPEC dis p1 p2 p3 =
1t:time. (dis t ==> “(p1 t) /\ ~“(p2 t) /\ "(p3 t}) /\
(p1 t = ~(dis &) /\ "(p2) /\ (3 t)) N\
(p2 t = “(dis t) /\ “(p1 t> /\ "(p3 t)) /\
(p3 t = “(dis t) /\ “(p1 t) /\ “(p2)) I\
(pt (t+1) = (p3 t)) /\
(p2 (t+1) = (pt ©)) /\
(p3 (t+1) = ({(p2 t) => ~(dis (t+1)) | F))"

% there would be a race here, but it can be gotten rid of
by feeding this block with the unstrobed "stop" right out
of the STOP unit. It makes NO difference at the spec level %

)i

let STOP_SPEC = new_definition
(*STOP_SPEC®,
"1 out inl in2 strobe.
STOP_SPEC out inl in2 strobe =

270

‘t:time. out (t+1) = (strobe t) => ((in1 t) \/ (in2 t)) | out t"

—_— ——— —————— 7.

let MPC_SPEC = new_definition
(*MPC_SPEC*,
"1 dis strobe (in:time->bt7) out.
MPC_SPEC dis strobe in out =
't:time. (out (t+1) = (strobe t) => in t |
(dis t) => (F,F,F,F,F,F,F) |
out t)"

Y% ———————mmme
INSTRUCTION DECODER

let INSDEC_SPEC = new_definition
(*INSDEC_SPEC*,
"t (rep:~rep_ty) (opcin:*opcode) (b enable stop reqm:bool) (opcout:bt5).
INSDEC_SPEC rep opcin b enable stop opcout reqm =
(stop = (FST (decode rep (opcin, b))) /\ enable) /\
(opcout = FST (SND (decode rep (opcin, b)))) /\
(reqm = SND (SND (decode rep (opcin, b))))"
)i

Y e e e e e e
MICRO-SEQUENCING LOGIC (MSL)
___________________ - R
let MSL_SPEC = new_definition

(‘MSL_SPEC*,

"' (rep: rep_ty) (res:swordn) (b ovl reqm:bool) (opc:bt5) (df seqctl:bt3)

(mf:bt2) (mc stop:bool) (maddr jaddr:bt7).
MSL_SPEC rep maddr seqctl res b ovl df mf reqm opc stop jaddr mc =

let casel = (seqctl = (F,F,T)) in
let case2 = (seqctl = (F,T,F)) in

let case3 = (seqctl = (F,T,T)) in
let case4 = (seqctl = (T,F,F)) in

let caseS5 = (seqctl = (T,F,T)) in
let case6 = (seqctl = (T,T,F)) in
let case7 = (seqctl = (T,T,T)) in
let bad_res = " (valid_address rep res) in
let pdest = ((df=(F,T,T)) \/ (df=(T,F,F)) \/ (4f=(T,F,T))) in
let skip = ((df=(T,F,F)) /\ “b) \/ ((d4£=(T,F,T)) /\ b) in

271

let bad_rdest = ((df=(T,T,F)) \/ (df=(T,T,T))) in
let bad_dest = ((df=(F,T,T)) \/ (df=(T,F,F)) \/ (df=(T,F,T))
\/ (4f=(T,T,F)) \/ (df=(T,T,T))) in
let bad_write = (((opc =(F,F,T,T,F)) \/ (opc = (F,F,T,T,T))) /\
(mf = (F,F))) in

((stop = ((casel /\ bad_write) \/
(case4 /\ ovl) \/
(case5 /\ bad_res) \/

(case6 /\ (bad_rdest \/
(“skip /\ pdest /\ bad_res))) \/
(case7 /\ bad_dest)))
AN
(jaddr = ((caset /\ “bad_write /\ reqm)
=> (bt7_ival ((bt7_val maddr)+(bt2_val mnf))) |
case? => (bt7_ival ((bt7_val maddr) + (bt5_val opc))) |
case3 => maddr |
(F,F,F,F,F,F,F)))

(me = ((casel /\ reqm) \/ case2 \/ case3)))"

let ALU_SPEC = new_definition
(*ALU_SPEC‘,
"1 (rep: rep_ty) (r m result:swordn) (ovl inb outb:bool) (aluctl ff:bt4).
ALU_SPEC rep r m result ovl inb outb aluctl ff =
let case0 = (aluctl = (F,F,F,F)) in
let casel = (aluctl = (F,F,F,T)) in
let case2 = (aluctl = (F,F,T,F)) in
let case3 = (aluctl = (F,F,T,T)) in
let case4 = (aluctl = (F,T,F,F)) in
let case5 = (aluctl = (F,T,F,T)) in
let caseé = (aluctl = (F,T,T,F)) in
let case7 = (aluctl = (F,T,T,T)) in
let case8 = (aluctl = (T,F,F,F)) in
let case9 = (aluctl = (T,F,F,T)) in

let casel0 = (aluctl = (T,F,T,F)) in
let casell = (aluctl = (T,F,T,T)) in
let casel2 = (aluctl = (T,T,F,F)) in
let caseld = (aluctl = (T,T,F,T)) in
let casel4 = (aluctl = (T,T,T,F)) in

(T,T,T,T)) in

let casel5 = (aluctl

272

let sum = (add rep (r,m)) in
let diff = (sub rep (r,m)) in
((outb = (case2 => (bcmp rep (r, m, inb, ff)) |
case4 => (addp rep (r, m, sum)) |
case6 => (subp rep (r, m, diff)) |
casel3 => (bit0 rep r) |
casel5 => (bitn rep r) |
inb))
N\
(ovl = ((cased \/ case5) => (aovfl rep (r, m, sum)) |
(case6 \/ case7) => (sovfl rep (r, m, diff)) |
casel4 => (bitn rep r) |
F))
/N
(result = (((case0) \/ (case2)) => m |
casel => r |
case3 => (neg rep m) |
(case4 \/ case5) => sum |
(case6 \/ case7) => diff |
case8 => (bxor rep (r, m)) |
case9 => (band rep (r, m)) |
casel10 => (bnor rep (r, m)) |
casell => (band rep (r, bnot rep m)) |
casel2 => (shr rep r) |
caseld => (shrb rep (r, inb)) |
casel4 => (shl rep r) |
(shlb rep (r, inb)))))*

let REGISTER_BLOCK = new_definition

(‘REGISTER_BLOCK*,

"! (rep:"rep_ty) (regs:time->(*wordn)list) strobe din_en result_en din_sel
addr_sel (mreg insreg result din r m:time->#wordn) (rsel msel:time->bt2)
(result_sel mdf:time->bt3) (mar:time->saddress) (ir:time->*opcode) dfc
(b :time->bool) .

REGISTER_BLOCK rep result din strobe r_sel result_sel din_en result_en
addr_sel din_sel m_sel mar ir r m regs mreg insreg dfc mdf b =
't:time.
((regs (t+1) =
(((strobe t) /\ (result_en t)) =>
(((dfc) /\ ((mdf t = (T,T,F)) \/ (wdf t = (T,T,T)))) =>

273

regs t |
(update_reg (regs t)(result_sel t)(b t)(result t))) |
(regs t))) /\
(mreg (t+1) =
((strobe t) =>
((din_en t) => ((din_sel t) => (mreg t) .| (din t)) |
(((result_en t) /\ (dfc t) /\ (bt3_val(result_sel t)=6)) =>
(result t)| (mreg t})) |
mreg t)) /\
(insreg (t+1) =
((strobe t} =>
((din_en t) => ((din_sel t) => (din t) | (insreg t)) |
(((result_en t) /\ (dfc t) /\ (bt3_val(result_sel t)=7)) =>
(join rep (opcode rep (insreg t), address rep (result t)))l|
(insreg t))) |
insreg t)) /\
(rt=
(EL (bt2_val (r_sel t)) (regs t))) /\
mt=
(((m_sel t) = (F,F)) => (mreg t) |
((m_sel t) = (F,T)) => (wordn rep 1) |
(pad rep (address rep (insreg t))))) /\
(ir t =
(opcode rep (insreg t))) /\
(mar t =
(addr_sel t => (address rep (insreg t)) |
(address rep (EL p_reg (regs t))))))"

______________ ——— =%

let EXT_INTERFACE = new_definition

(“EXT_INTERFACE®,

") (rep:-rep_ty) rd wr io strobe addr w_data r_data ram.
EXT_INTERFACE rep rd wr io strobe addr w_data r_data ram =
‘t:time .

(ram (t+1) =
(({wr t) /\ (strobe t)) =>
(io t => storeio rep (ram t, addr t, w_data t} |
store rep (ram t, addr t, w_data t)) i
ram t)) /\
(r_data t =
(((rd t) /\ (strobe t)) =>

274

(io t => fetchio rep (ram t, addr t) |
fetch rep (ram t, addr t)) !
(wordn rep 0)))"
% actually O can be replaced by ARB. 0 is chosen for simplicity %

Control Unit

let CONTROL_UNIT = new_definition
(CONTROL_UNIT®,
"' (rep:"rep_ty) (mpc:time->bt7)
(ph1 ph2 ph3 stop reqm msl_stop b ovl r w io dfc de re adrs
ds:time->bool) (rs:time->bt2) (rft mft:bt2) (ress mdf:time->bt3)
(dft:bt3) (opc:time->bt5) (res:time->#wordn) (mir:time->ucode)
(aluctl:time->bt4) (dec_ctl :time->bool)
(urom: (time->num->ucode)) (reset:time~>bool).
CONTROL_UNIT rep mpc phl ph2 ph3 stop rft mft dft reqm opc msl_stop res
b ovl mir aluctl dec_ctl r v io mdf dfc rs ress de re adrs ds
ms urom (reset) =
! t:time.
? maddr seqctl jaddr mc muxm_o mrf rfc.
((MSL_SPEC rep (maddr t) (seqctl t) (res t) (b t) (ovl t) dft mft
(reqm t) (opc t) (msl_stop t) (jaddr t) {(mc t))

\
(PHASE_CLOCK_SPEC stop ph1l ph2 ph3)
N\
(MUXM_SPEC (mc t)(jaddr t) (bt7_ival ((bt7_val (mpc t)) + 1)) (muxm_o t))
A\
(MPC_SPEC stop ph3 muxm_o mpc)
\
(mir (t+1) = (phl t) => urom t (bt7_val (mpc t)) | mir t)
N\

(maddr t = (Maddr (mir t))) /\
(seqctl t = (Seqctl (mir t))) /\
(aluctl t = (Aluctl (mir t))) /\
(dec_ctl t = (Dec_ctl (mir t))) /\
(r t = (R (mir t))) /\

(wt = (W (mir t))) /\

(io t = (Io (mir t))) /\

(orf t = (Mrf (mir t))) /\

(mdf t = (MAf (mir t))) /\

(rfc t = (Rfc (mir t))) /\

(dfc t = (Dfc (mir t))) /\

(de t = (De (mir t))) /\

275

(re t = (Re (mir t))) /\

(adrs t = (Adrs (mir t))) /\

(ds t = (Ds (mir t))) /\

(ms t = (Ms (mir t))) /\

(MUXR_SPEC (rfc t) (mrf t) (rft) (rs t)) /\

(MUXD_SPEC (dfc t) (mdf t) (dft) (ress t)))"
)5

Y e e e 2 e e e e e o i e
Data path

let DATAPATH = new_definition

(“‘DATAPATH',

"1 (rep:"rep_ty) (din dout rlatch mlatch res mreg insreg:time->*wordn)
(b ovl reqm stop msl_stop ph2 ph3 rd wr io dfc din_en result_en

addr_sel din_sel :time->bool)

(mar:time->*address) (opc:time->bt5) (regs:time->(*wordn)list)
(r_sel m_sel:time->bt2) (rft mft:bt2) (result_sél mdf:time->bt3)
(dft:bt3) (ram:time->*memory) (aluctl:time->bt4)

(dec_ctl reset:time->bool).

DATAPATH rep din dout b mar rlatch mlatch res ovl opc regm stop msl_stop
ph2 ph3 regs mreg insreg rft mft dft ram rd wr io mdf dfc aluctl
dec_ctl r_sel result_sel din_en result_en addr_sel din_sel
m_sel reset =

't:time.

7 din_i mar_i rlatch_i mlatch_i result alu_ovl alu b ir dec_stop.

((rft = RSF rep (insreg t)) /\

(mft = MSF rep (insreg t)) /\

(dft = DSF rep (insreg t)) /\

(REGISTER_BLOCK rep result din ph3 r_sel result_sel din_en result_en

addr_sel din_sel m_sel mar_i ir rlatch_i mlatch_i regs mreg insreg

dfc mdf b)

AN

(MAR_SPEC (\t. ((rd t) \/ (sr t))) ph2 mar_i mar)
N

(REG_EN_SPEC rd ph3 din_i din)
N

(REG_EN_SPEC wr ph2 rlatch_i dout)
N\

(EXT_INTERFACE rep rd vr io ph3 mar dout din_i ram)
AN

(REG_SPEC mlatch_i ph2 mlatch)
A

(REG_SPEC rlatch_i ph2 rlatch)
AN

276

(ALU_SPEC rep (rlatch t) (mlatch t) (result t) (alu_ovl t) (b t)
(alu_b t) (aluctl t) (FSF rep (insreg t)))

/\

(REG_SPEC result ph3 res)

/\
(FF_SPEC alu_ovl ph3 ovl)
AN

(FF_SPEC alu_b ph3 b)
/\

(INSDEC_SPEC rep (ir t) (b t) (dec_ctl t) (dec_stop t) (opc t) (reqm t))
/N

(STOP_SPEC stop dec_stop msl_stop ph2))"

)53

let EBM_state =
n; (svwordn)list # % regs %
(*vordn # % mreg %
(*wordn # % insreg %
{*wordn # ¥ din %
(#vordn ¢ ¥ dout %
(*memory # Y% ram %
(bool # % b U
(bool # Y% stop %
(bool # % ovl %
(*address # % mar %
(*vordn # % res %
(bt7 # % mpc %
(ucode % % mir %
((num -> ucode) # % urom %
(*wordn # % rlatch %
(#wordn # % mlatch %
(bool # Y phasel %
(bool # bool))))))))I)NINININ";; % phase2, phase3 %

let RegsS = new_definition
(‘RegsS‘,
"1 (t:time) (s:time->"EBM_state)
RegsS s t = FST(s t)"
)i

let RegsS = TAC_PROCF
«1ai,

"1 (t:time) (regs:time->(*wordn)list)

277

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->+*memory) (b stop ovl phil ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
RegsS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phil t, ph2 t, ph3 t)) = regs"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [RegsS]
THEN BETA_TAC
THEN REWRITE_TAC (]
)i

let MregS = new_definition
(‘Mregs‘,
"t(t:time) (s:time->"EBM_state) .
MregS s t = FST(SND(s t))"
)i

let MregS = TAC_PROOF
«11,
“! (t:time) (regs:time->(*wordn)list)
(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->=*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->#address) (mpc:time->bt7) (mir:time-ducode)
(urom:num->ucode) .
MregS (\t. (regs t, mreg t, insreg t, din t, dout t, ramt, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = mreg"),
REPEAT GEN_TAC
THEN COXV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [Mregs]
THEN BETA_TAC
THEN REWRITE_TAC []
)i

let InsregS = new_definition
(‘Insregs‘,
"t(t:time) (s:time->"EBM_state) .
InsregS s t = FST(SND(SND(s t)))"
)i

let InsregS = TAC_PROOF

(11,
"1 (t:time) (regs:time->(*vordn)list)

278

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
InsregS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop ¢,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = insreg"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [InsregS]
THEN BETA_TAC
THEN REWRITE_TAC [J
)i

let DinS = new_definition
(‘DinS*,
"1 (t:time) (s:time->"EBM_state) .
DinS s t = FST(SND(SND(SND(s t)}))"
)i

let DinS = TAC_PROQF
«a,
"1 (t:time) (regs:time->(*wordn)list)
(mreg insreg din dout res rlatch mlatch:time->#wordn)
(ram:time->*memory) (b stop ovl phi ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
DinS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phi t, ph2 t, ph3 t)) = din"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC (DinS]
THEN BETA_TAC
THEN REWRITE_TAC (]
)i

let DoutS = nev_definition
(‘DoutS‘,
"i(t:time) (s:time->"EBM_state) .
DoutS s t = FST(SND(SND(SND(SND(s t)))))"
)i

let DoutS = TAC_PROOF
«a,

“1 (t:time) (regs:time->(svordn)list)

279

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode).
DoutS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = dout"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [DoutS]
THEN BETA_TAC
THEN REWRITE_TAC (]
)i

let RamS = new_definition
(‘RamS°‘,
"1(t:time) (s:time->"EBM_state)
RamS s t = FST(SND(SND(SND(SND(SND(s t))))))"
)33

let RamS = TAC_PROOF
«a,
"t (t:time) (regs:time->(*wordn)list)
(mreg insreg din dout res rlatch mlatch:time->*vordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time=->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num~>ucode) .
RamS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
pht t, ph2 t, ph3 t)) = ram"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [RamS]
THEN BETA_TAC
THEN REWRITE_TAC []
)i

let BS = new_definition
(‘BS‘,
"1(t:time) (s:time->"EBM_state) .
BS s t = FST(SND(SND(SND(SND(SND(SND(s t)))))))"
)is

let BS = TAC_PROOF
11,
"t (t:time) (regs:time->(*wordn)list)

280

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
BS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phi t, ph2 t, ph3 t)) = b"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [BS]
THEN BETA_TAC
THEN REWRITE_TAC []
)i

let StopS = new_definition
(‘Stops*‘,
"i(t:time) (s:time->"EBM_state)
StopS s t = FST(SND(SND(SND(SND(SND(SND(SND(s t)))>))))"

)i

let StopS = TAC_PROOF
(11,
“t (t:time) (regs:time->(*wordn)list)
(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
StopS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
pht t, ph2 t, ph3 t)) = stop"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [StopS]
THEN BETA_TAC
THEN REWRITE_TAC []
)3

let OvlS = new_definition
(‘0Ov1s‘,
"1(t:time) (s:time->"EBM_state)
OvlS s t = FST(SND(SND(SND(SND(SND(SND(SND(SND(s DN IN"
)is

let OvlS = TAC_PROOF
«n,
“1 (t:time) (regs:time->(*wordn)list)

281

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->#memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
GvlS (\t. (regs t, mreg t, insreg t, dint, dout t, ran t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = ovl"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [0v1S]
THEN BETA_TAC
THEN REWRITE_TAC []
)i

let MarS = new_definition
(‘Mars‘,
"t(t:time) (s:time->"EBM_state) .
MarS s t = FST(SND(SND(SND(SND(SND(SND(SND(SND(SND(s t))))))))))n
)i

let MarS$S = TAC_PROOF

«1,
"! (t:time) (regs:time->(swordn)list)

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time~>*memory) (b stop ovl phi ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
MarS (Mt. (regs t, mreg t, insreg t, din t, dout t, ram t; b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = mar"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [MarS]
THEN BETA_TAC
THEN REWRITE_TAC []
)is

let ResS = new_definition
(‘ResS*,
"!(t:time) (s:time->"EBM_state)
ResS s t = FST(SND(SND(SND(SND(SND(SND(SND(SND(SND(SND(s DN
)i

let ResS = TAC_PROOF

{1,
“! (t:time) (regs:time->(*wordn)list)

282

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
ResS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
pht t, ph2 t, ph3 t)) = res"),

REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)

THEN PURE_ONCE_REWRITE_TAC [ResS]
THEN BETA_TAC

THEN REWRITE_TAC (]

)i

let MpcS = new_definition
(‘Mpcs‘,
"1(t:time) (s:time->"EBM_state) .
MpcS st = FST (SND(SND(SND (SND(SND (SND(SND (SND(SND (SND(SND(s tHNHINHND
Yis

let MpcS = TAC_PROOF
«1,
"1 (t:time) (regs:time->(#vordn)list)
(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
MpcS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, bt, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phi t, ph2 t, ph3 t)) = mpe™),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [MpcS]

THEN BETA_TAC
THEN REWRITE_TAC []

)i

let MirS = new_definition
(‘Mirs‘,
"i1(t:time) (s:time->"EBM_state) .
MirS s t = FST(SND(SND(SND(SHD(SHD(SND(SND(SHD(SND(SND(SND(SND(S LDNIVNNMIN"

)i

let MirS = TAC_PROOF

«a,
v (t:time) (regs:time->(»wordn)list)

283

(mreg insreg din dout res rlatch mlatch:time->*gordn)
(ram:time->»memory) (b stop ovl phi ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .

MirS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = mir"),

REPEAT GEN_TAC

THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [MirS]

THEN BETA_TAC

THEN REWRITE_TAC []
..

R

let UromS = nev_definition
(‘UromS*‘,
"!(t:time) (s:time->"EBM_state) .
UromS s t = FST(SND(SND(SND(SND (SND(SND (SND{SND (SND(SND{SND(SND(SND(s tHIDIIHINNMH
)i

let UromS = TAC_PROOF
o1,
"t (t:time) (regs:time->(*wordn)list)
(nreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->»memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->+address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
UromS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phi t, ph2 t, ph3 t)) = (\t:time. urom)"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [UromS]
THEN BETA_TAC
THEN REWRITE_TAC []
Yo

let RlatchS = new_definition
(‘Rlatchs‘,
"1(t:time) (s:time->"EBM_state)
RlatchS s t = FST (SND(SND(SND (SND(SND (SND (SND (SND(SND (SND (SND (SND (SND (SND (s DIV NMOIN
)5

let RlatchS = TAC_PROOF
1,
"! (t:time) (regs:time->(*wordn)list)

284

(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phi ph2 ph3:time->bool)
(mar:time->xaddress) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
RlatchS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, bt, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phi t, ph2 t, ph3 t)) = rlatch"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [RlatchS]
THEN BETA_TAC
THEN REWRITE_TAC []
)i

let MlatchS = new_definition
(‘MlatchS*,
"!(t:time) (s:time->"EBM_state) .
MlatchS s t = FST(SND(SND(SND(SND{
SND(SND (SND(SND (SND (SND(SND (SND(SND (SND(
SND(s t)HINNNININMIN"
Y33

let MlatchS = TAC_PROOF
o,
"t (t:time) (regs:time->(*wordn)list)
(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->»address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
MlatchS (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t)) = mlatch"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [MlatchS]
THEN BETA_TAC
THEN REWRITE_TAC (]
M

let Ph1S = newv_definition
(‘Phi1s‘,
"1(t:time) (s:time->"EBM_state) .
Ph1S s t = FST(SND(SND(SND(SND(SND(SND(
SND (SND(SND(SND (SND(SND(SND(
SND(SND(SND(s t)))3))1NN»nH»

285

let Ph1S = TAC_PROOF
{1,
"1 (t:time) (regs:time->(*wordn)list)
(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
Ph1S (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
ph1 t, ph2 t, ph3 t)) = ph1"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [PhiS§]
THEN BETA_TAC
THEN REWRITE_TAC (]
)i

let Ph2S = new_definition
(‘Ph2s‘,
"1(t:time) (s:time->"EBM_state) .
Ph2S s t = FST(SND(SND(SND(SND(SND(SND(
SND (SND (SND(SND(SND(SND(
SND(SND(SND(SND(SND(s t))))))))))))))))"

)i

let Ph2S = TAC_PROOF

(1,
"1 (t:time) (regs:time->(#vordn)list)
(mreg insreg din dout res rlatch mlatch:time->*wordn)
(ram:time->#*memory) (b stop ovl phl ph2 ph3:time->bool)
(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)
(urom:num->ucode) .
Ph2S (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phi t, ph2 t, ph3 t)) = ph2"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_DNCE_REWRITE_TAC [Ph2S]
THEN BETA_TAC
THEN REWRITE_TAC []
)5
let Ph3S = new_definition

(‘Ph3S¢,
"1 (t:time) (s:time->"EBM_state)

286

Ph3S s t = SND(SND(SND(SND(SND(SND(SND(SND(
SND (SND(SND (SND (SND{SND (SND(SND(
SND(SKD(s t)))))INNNINII)
P K

let Ph3S = TAC_PROOF
«nana,

"t (t:time) (regs:time->(*vordn)list)

(mreg insreg din dout res rlatch mlatch:time->#wordn)
(ram:time->*memory) (b stop ovl phl ph2 ph3:time->bool)

(mar:time->*address) (mpc:time->bt7) (mir:time->ucode)

(urom:num->ucode).

Ph3S (\t. (regs t, mreg t, insreg t, din t, dout t, ramt, b t, stop t,

ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,

phi t, ph2 t, ph3 t)) = ph3"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [Ph3S]
THEN BETA_TAC
THEN REWRITE_TAC []
)is

let EBM_env = ":bool";;

let ResetE = new_definition
(‘ResetE‘,
"t (t:time) (e:time->"EBM_env) .
ResetE e t = e t"
Yis

let ResetE = TAC_PROOF
«a,
"t (t:time) (reset:time->bool) .
ResetE (\t. reset t) = reset"),
REPEAT GEN_TAC
THEN CONV_TAC (TOP_DEPTH_CONV FUN_EQ_CONV)
THEN PURE_ONCE_REWRITE_TAC [ResetE]
THEN BETA_TAC
THEN REWRITE_TAC []

’/. _______ - —

let EBM_def = new_definition
(‘EBM_def‘,

"1 (rep:°rep_ty) (s:time->"EBM_state) (e:time->"EBM_env)

287

EBM rep s e =
? opc reqm msl_stop rf mf df rd vr io mdf dfc aluctl dec_ctl
r_sel result_sel din_en result_en addr_sel din_sel m_sel.
(DATAPATH rep (DinS s) (DoutS s) (BS s) (MarS s) (RlatchS s)
(MlatchS s) (ResS s) (Ov1S s) opc regm (StopS s) msl_stop
(Ph2S s) (Ph3S s) (RegsS s) (MregS s) (InsregS s) rf mf df (RamS s)
rd vr io mdf dfc aluctl dec_ctl r_sel result_sel din_en
result_en addr_sel din_sel m_sel (ResetE e)) /\

(CONTROL_UNIT rep (MpcS s) (Ph1S s) (Ph2S s) (Ph3S s) (StopS s) rf mf
df reqm opc msl_stop (ResS s) (BS s) (OvlS s) (Mir$ s) aluctl dec_ctl
rd wr io mdf dfc r_sel result_sel din_en result_en addr_sel din_sel
m_sel (UromS s) (ResetE e))"

)i

let EBM = prove_thm
(“EBM‘,
"t (rep:-rep_ty) (regs:time->(#vordn)list)
(ureg insreg din dout:time->*wordn) (ram: time->*memory)
(b stop ovl:time->bool) (mar:time->»address) (res:time->*wordn)
(mpc:time->bt7) (mir:time->ucode) (urom:num->ucode)
(riatch mlatch:time->*wordn) (phl ph2 ph3:time->bool)
(reset:time->bool).
EBM rep (\t. (regs t, mreg t, insreg t, din t, dout t, ram t, b t, stop t,
ovl t, mar t, res t, mpc t, mir t, urom, rlatch t, mlatch t,
phl t, ph2 t, ph3 t))
(\t. (reset t)) =
? opc reqm msl_stop rf mf df rd wr io mdf dfc aluctl dec_ctl
r_sel result_sel din_en result_en addr_sel din_sel m_sel.
(DATAPATH rep din dout b mar rlatch mlatch res ovl opc reqm stop
msl_stop ph2 ph3 regs mreg insreg rf mf df ram rd wr io mdf dfc
aluctl dec_ctl r_sel result_sel din_en result_en addr_sel
din_sel m_sel reset) /\
(CONTROL_UNIT rep mpc phi ph2 ph3 stop rf mf df reqm
opc msl_stop res b ovl mir aluctl dec_ctl rd vr io mdf dfc r_sel
result_sel din_en result_en addr_sel din_sel m_sel (\t:time.urom)
reset)",
REWRITE_TAC [RegsS; MregS; InsregS; DinS; DoutS; RamS; BS; StopS;
Ov1S; MarS; ResS; MpcS; Mir$S; UromS; RlatchS; MlatchS$;
Ph1S; Ph2S; Ph3S; ResetE; EBM_def]
)i

let EBM_expanded = save_thm
(‘EBM_expanded’,
(CONV_RULE (TOP_DEPTH_CONV BETA_CONV)

288

(REWRITE_RULE
[DATAPATH; CONTROL_UNIT; REGISTER_BLOCK;
MUXR_SPEC; MUXD_SPEC; MUXM_SPEC;
REG_SPEC; FF_SPEC; REG_EN_SPEC;
MAR_SPEC; PHASE_CLOCK_SPEGC; STOP_SPEC;
MPC_SPEC; INSDEC_SPEC; (EXPAND_LET_RULE MSL_SPEC);
(EXPAND_LET_RULE ALU_SPEC); EXT_INTERFACE]

(SPEC_ALL EBM)))

T

let GetEBMClock = new_definition
(‘GetEBMClock’,
"! (regs:(*wordn)list) (mreg insreg din dout:*wordn) (ram:*memory)

(b stop ovl:bool) (mar:*address) (res:*wordn) (mpc:bt7) (mir:ucode)

(urom:num->ucode) (rlatch mlatch:*wordn) (ph1 ph2 ph3:bool) (reset:bool).

GetEBMClock (regs, mreg, insreg, din, dout, ram, b, stop, ovl, mar, res,
mpc, mir, urom, rlatch, mlatch, phl, ph2, ph3) (reset) =

€x:bool.F"

let EBM_Start = new_definition
(‘EBM_Start*®,
"EBM_Start = 0x:bool.F"
Y

close_theory();;

289

Appendix J:

CASES FOR THE DECODER:

. bemp
CSF

. writeio

“CSF /\ DSF = (T,T,T)

. Writem

“CSF /\ DSF = (T,T,F)

. noop
“CSF /\
“(DSF = (T, T, T) \/ DSF = (T,
(DSF = (T, F, F) /\ "®)

. noop
“CSF /\
“(DSF = (T, T, T \/ DSF = (T,
(DSF = (T, F, T) /A b)

. call
“CSF /\
“(DSF = (T, T, T) \/ DSF = (T,

“((DSF = (T, F, T) /\ "b) \/
FSF = (F, F, F, T)

. neg

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T,
“({DSF = (T, F, T) /\ "b) \/
"FSF = (F, F, F, T) /\

FSF = (F, F, F, F)

. readio

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T,
“(SF = (T, F, T) /\ "b) \/
“FSF = (F, F, F, T) /\

FSF = (F, F, T, F)

T, F)) /\

T, B)) /\

T, F)) /\
(DSF = (T, F, F) /\ b))

T, F)) /\
(DSF = (T, F, F) /\ b))

T, F)) /A
(DSF = (T, F, F) /\ b))

e FEARE T
“§M61d1'5 T

INSTRUCTION DECODER

1

FAPCENING FAGE BLANK NQ{ F LMEP

291

10.

11

12

13.

14.

15.

. readm

“CSF /\

~(DSF = (T, T, T) \/ DSF = (T,
~((DSF = (T, F, T) /\ "b) \/
“FSF = (F, F, F, T) /\

FSF = (F, F, T, T)

addb

~CSF /\

-(DSF = (T, T, T) \/ DSF = (T,
“((DSF = (T, F, T) /\ "b) \/
“FSF = (F, F, F, T) /\

FSF = (F, T, F, F)
.adds

“CSF /\

~(DSF = (T, T, T) \/ DSF = (T,
~((DSF = (T, F, T) /\ "b) \/
“FSF = (F, F, F, T) /\

FSF = (F, T, F, T)
.subb

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T,
“((DSF = (T, F, T) /\ "b) \/
“FSF = (F, F, F, T) /\

FSF = (F, T, T, F)

subo

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T,
“((DSF = (T, F, T) /\ "b) \/
"FSF = (F, F, F, T) /\

FSF = (F, T, T, T)

xor

~CSF /\

“(DSF = (T, T, T) \/ DSF = (T,
“((DSF = (T, F, T) /\ "b) \/
"FSF = (F, F, F, T) /A

FSF = (T, F, F, F)

and

“CSF /\
“(DSF = (T, T, T) \/ DSF = (T,

292

T,) /A
(DSF = (T,

T, F)) /\
(DSF = (T,

T, F)) /\
(DSF = (T,

T, F)) /\
(DSF = (T,

T, F)) /\
(DSF = (T,

T, F)) N\
(DsF = (T,

T, F)) /\

F) /A b))

F) /\ b))

F) /A b))

F) /\ b))

F) /\ b))

F) /\ b))

16.

17

18.

19

20.

21.

22.

“((DSF = (T, F, T) /\ "b) \/ (DSF =
“FSF = (F, F, F, T) /\
FSF = (T, F, F, T)

nor

“CSF /\

“(DSF = (T, T, T \/ DSF = (T, T, F))
“((DSF = (T, F, T) /\ "b) \/ (DSF =
"FSF = (F, F, F, T) /\

FSF = (T, F, T, F)

.andmbar

TCSF /\

"(DSF = (T, T, T) \/ DSF = (T, T, F))
“((SF = (T, F, T) /\ ") \/ (DSF =
“FSF = (F, F, F, O /\

FSF=(T, F, T, T)

shr

“CSF /\

"(DSF = (T, T, T) \/ DSF = (T, T, F))
“((DSF = (T, F, T) /\ "b) \/ (DSF =
“FSF = (F, F, F, T) /\

FSF = (T, T, F, F) /\ (MSF = (F, F))

.shrb

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T, T, F))
“((DSF = (T, F, T) /\ "b) \/ (DSF =
"FSF = (F, F, F, T) /\

FSF = (T, T, F, F) /\ (MSF = (F, T))

shl

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T, T, F))
“((DSF = (T, F, T /\ "b) \/ (DSF =
"FSF = (F, F, F,) /\

FSF = (T, T, F, F) /\ (MSF = (T, F))

shlb

“CSF /\

“(DSF = (T, T, T) \/ DSF = (T, T, F))
“((DSF = (T, F, T) /\ "b) \/ (DSF =
“FSF = (F, F, F, T) /\

FSF = (T, T, F, F) /\ (MSF = (T, T))

error

(T, F, F) /\ b))

AN
(T, F, F) /\ b))

A
(T, F, F} /A b))

\
(T, F, F) /\ b))

AN
(T, F, F) /\ b))

AN
(T, F,) /\ b))

/\
(T, F, F) /A b))

293

23.

24.

“CSF /\
“(DSF = (T, T, T) \/ DSF = (T, T, F)) /\

~((DSF = (T, F, T) /\ "b) \/ (DSF = (T, F, F) /\ b))

“FSF = (F, F, F,) /\
FSF = (T, T, F, T

error
“CSF /\
“(DSF = (T, T, T) \/ DSF = (T, T, F)) /\

“((DSF = (T, F, T) /\ "} \/ (DSF = (T, F, F) /\ b))

“FSF = (F, F, F, T) /\
FSF=(T, T, T, F)

error
~CSF /\
“(DSF = (T, T, T) \/ DSF = (T, T, F)) /\

“((DSF = (T, F, T) /\ "®) \/ (DSF = (T, F, F) /A b))

“FSF = (F, F, F,) /\
FSF=(T, T, T, T)

294

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

PubIC cepOrting turden ‘or this coltection of nfOfMALION 1y estimated 1y Jvecage ' Nour per tesponse. nctuding the time for reviewing «nsirycions SEArLNNG ExSUING JALA SOurces
Jathering and Mmaintaining the gata needed. and {OMpIelng Ang reviewing t=e (3llection ot intarmation Seng comments Ve?ardmz; 1his Durden estimate or any GLher aspect O thig

collection o* »nformation including suggestions or [EUUNG My DUTDRN T3 WaShingIon Headquarters Services. Directorate for nformation Operations ang Reports, 12°5 jetterson
Davis Highway. Sure 1204 Arhington. 73 22202-3302 and 15 tna O*f.cp a4 Management and Audget. Paperwork Reduction Project (C704-0188) wash:rgton OC 20503
1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1993 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Formal Verification of a Microcoded VIPER Microprocessor
Using HOL C NAS1-18586

6. AUTHOR(S) WU 505~64-10-07

Karl Levitt Sara Kalvala Mark Heckman

Te jkumar Arora E. Thomas Schubert Gerald C.Cohen

Tony Leung Philip Windley

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

Boeing Defense and Space Group REPORT NUMBER

Military Airplanes Division
P.O. Box 3707, M/S 4C-70
Seattle, WA 98124-2207

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Langley Research Center NASA CR-4489
Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES
Levitt, Arora, Leung, Kalvala, Schubert, Windley, and Heckman: University of

California, Davis, CA; Cohen: Boeing Defense & Space Group, Seattle, WA.
Langley Technical Monitor: Sallyv C. Johnson

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 62

13. ABSTRACT (Maximum 200 words)

RSRE and members of the Hardware Verification Group at Cambridge University
conducted a joint effort to prove the correspondence between the electronic
block model and the top level specification of Viper. Unfortunately, the proof
became too complex and unmanagable within the given time and funding constraints,
and is thus imcomplete as at the date of this report.

This report describes an independent attempt to use the HOL mechanical verifier

to verify Viper. Deriving from recent results in hardware verification research

at UC Davis, the approach has been to redesign the electronic block model to make

it microcoded and to structure the proof in a series of decreasingly abstract
interpreter levels, the lowest being the electronic block level. The highest level
is the RSRE Viper instruction set. Owing to the new approach and some results on
the proof of generic interpreters as applied to simple microprocessors, this attempt
required an effort approximately an order of magnitude less than the previous one.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Verification Electronic Block Model 308
Viper RSRE Macro Level 16. PRICE CODE
Interpreter Levels Phase to Micro Level Al4
17 SECURITY CLASSIFICATION |18 SECURITY CLASSFICATION 119 SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 Stardard Form 298 (Rev 2-89)
Presc Dea Oy ANSI Sta 23909
249972

NASA-Langley, 1993

e,

